Distributed Systems

CS425/ECE428

March |/ 2021

Instructor: Radhika Mittal

Logistics

* MP1I is due today.

* MP2 was released today. Due on Friday, April 9™, | 1:59pm.

* HW3 deadline extended to Friday, March 9™, | 1:59pm.
* HW4 will be released on Friday.

* Midterm | grades and solutions will be released early next
week.

Agenda for today

* Consensus

* Good enough consensus algorithm for asynchronous systems:
* Paxos made simple, Leslie Lamport, 2001

* Other forms of consensus algorithm
* Raft (log-based consensus)

Recap

* Consensus Is a fundamental problem in distributed
systems.

* Possible to solve consensus in synchronous systems.
* Algorithm based on time-synchronized rounds.
* Need at least (f+1) rounds to handle up to f failures.

* Impossible to solve consensus Is asynchronous systems.
* Cannot distinguish between a timeout and a very very slow
process.

* Paxos algorithm:
* Guarantees safety but not liveness.
* Hopes to terminate if under good enough conditions.

Paxos Algorithm

* Three types of roles:
* Proposers: propose values to acceptors.
* All or subset of processes.
* Having a single proposer (leader) may allow faster termination.
* Acceptors: accept proposed values (under certain conditions).
* All or subset of processes.

* Learners: learns the value that has been accepted by majority of
acceptors.

* All processes.

Paxos Algorithm

* Key condition:
* When majority of acceptors accept a single proposal with a
value v, then that value v becomes the decided value.
* This is an implicit decision. Learners may not know about it
right-away.
* Any higher-numbered proposal that gets accepted by majority of

acceptors after the implicit decision must propose the same
decided value.

Paxos Algorithm: Two phases

* Phase I:

* A proposer selects a proposal number (n) and sends a prepare
request with n to majority of acceptors, requesting:

* Promise me you will not reply to any other proposal with a lower
number.

* Promise me you will not accept any other proposal with a lower
number.

* |f an acceptor receives a prepare request for proposal #n, and it
has not responded to a prepare request with a higher number; it
replies back saying:

* OKI'l will make that promise for any request | receive in the future.

* (If applicable) | have already accepted a value v from a proposal with

lower number m < n. This proposal has the highest number among the
ones | accepted so far.

Paxos Algorithm: Two phases

* Phase 2:

* |f a proposer receives an OK response for its prepare request
#n from a majority of acceptors, then it sends an accept request
with a proposed value.What is the proposed value!?

* The value v of the highest numbered proposal among the received
responses.

* Any value if no previously accepted value in the received responses.
* |f an acceptor receives an accept request for proposal #n, and it

has not responded a prepare request with a higher number; it
accepts the proposal.

Paxos Algorithm

* When majority of acceptors accept a single proposal with a value v,
then that value v becomes the decided value.
* Suppose this proposal has a number m.

* By design of the algorithm: any subsequent proposal with a number n higher than
m will propose a value v.

* Proof by induction:

* Induction hypothesis: every proposal with number in [m,....n-1] proposes
value v.

* Consider a set C with majority of acceptors that have accepted m’s
proposal (and value v).

* Every acceptor in C has accepted a proposal with number in [m,....n-1].
* Every acceptor in C has accepted a proposal with value v.

* Any set consisting of a majority of acceptors has at least one member in
C.

* Proposal #n's prepare request will receive an OK reply with value v.

Paxos Algorithm

* When majority of acceptors accept a single proposal with a value v,
then that value v becomes the decided value.

e How do learners learn about it?

* Every time an acceptor accepts a value, send the value and proposal # to a
distinguished learner.

* This distinguished learner will check if a decision has been reached and will
inform other learners.

* When it receives the same value and proposal # from a majority of
acceptors.

* Use a set of distinguished learners to better handle failures.
* What happens if a message is lost or all distinguished learners fail?
* May not know that a decision has been reached.

* A proposer will issue a new request (and will propose the same value).
Acceptors will accept the same value and will notify the learner again.

Paxos Algorithm

* Best strategy: elect a single leader who proposes values.

* Assume this leader Is also the distinguished learner.

Proposer Distinguished Learner

Accept #1, v

N /ARNC/AN
WA

* What if we have multiple proposers? (leader election is not perfect is

asynchronous systems)

* May have a livelock! Two proposers may keep pre-empting each-other's
requests by constantly sending new proposals with higher numbers.

 Safety is still guaranteed!

Paxos Algorithm

* What if majority of acceptors fall before a value I1s decided?
* Algorithm does not terminate.
* Safety is still guaranteed!

* What if a process fails and recover again?
* Ifitis an acceptor, it must remember highest number proposal it has accepted.
* Acceptors log accepted proposal on the disk.

* As long as this state can be retrieved after fallure and recovery, algorithm
works fine and safety is still guaranteed.

* Exercise: think about what else can go wrong and how would Paxos
handle that situation?

Log Consensus

* Paxos algorithm (discussed so far) is used for deciding on a
single value.

* Many practical systems need to decide on a sequence of
values (log).

Replicated Log
CEEEEEE

N

/ Consensus

Module

i o

St=* .
Machine

add

jmp

mov sh.—|

J

/" Consensus
Module

N

i o

~
Skaie . / Conc ~nsus

Machine

add

jmp

mov sh.—|

J

N

Mo Jule

S ate

Mac hine

2

add|jmp

mov

sh.—|

~

J

* Replicated log => replicated state machine
e All servers execute same commands in same order

* Consensus module ensures proper log replication

Clients

Servers

Log Consensus

* Paxos algorithm (discussed so far) is used for deciding on a
single value.

* Many practical systems need to decide on a sequence of
values (log).

* Multi-Paxos: run Paxos repeatedly for each log entry.

* Quickly becomes very complex.
* Performance optimizations further increase the complexity.

Paxos is difficult to understand

“The dirty little secret of the NSDI* community is that at most
five people redlly, truly understand every part of Paxos ;-).*
— Anonymous NSDI reviewer

*The USENIX Symposium on Networked Systems
Design and Implementation

Paxos is difficult to implement

““There are significant gaps between the description of the
Paxos algorithm and the needs of a real-world system. ..the
final system will be based on an unproven protocol.”

— Chubby authors

Agenda for today

* Consensus

* Other forms of consensus algorithm
* Raft (log-based consensus)

Raft: A Consensus
Algorithm
for Replicated Logs

Slides from Diego Ongaro and John Ousterhout, Stanford University

Goal: Replicated Log
CEEEEEE

=)
[Consensus Sttt K Con< >nsus S ate

f Consensus St=2C
Module Machine

1‘ @

add jmp mov sh.—|

J

Module Machine

DD

Replicated log =>

Mo Jule Mac hine

DD

add|jmp |[mov sh.—|

J

add|jmp |[mov sh.—|

~

J

o All servers execute same commands in same order

Consensus module ensures proper log replication

Clients

Servers

System makes progress as long as any majority of servers are up

Failure model: fail-stop (not Byzantine), delayed/lost messages

Goal: Design for understandability

* Main objective of Raft's design

* Whenever possible, select the alternative that is the
easlest to understand.

* Techniques that were used include
* Dividing problems into smaller problems.
* Reducing the number of system states to consider.

Approaches to Consensus

Iwo general approaches to consensus:

* Symmetric, leader-less:
* All servers have equal roles
* Clients can contact any server

* Asymmetric, leader-based:

e At any given time, one server is In charge, others accept its
decisions

e Clients communicate with the leader

* Raft uses a leader:
* Decomposes the problem (normal operation, leader changes)
* Simplifies normal operation (no conflicts)
* More efficient than leader-less approaches

Raft Overview

|. Leader election:
* Select one of the servers to act as leader
e Detect crashes, choose new leader

2. Normal operation (basic log replication)
3. Safety and consistency after leader changes

4. Neutralizing old leaders

Raft Overview

|. Leader election:
e Select one of the servers to act as leader
e Detect crashes, choose new leader

Server States

* At any given time, each server Is erther:

* Leader: handles all client interactions, log replication
e At most | viable leader at a time

* Follower: completely passive: issues no RPCs (requests),
responds to incoming RPCs

e Candidate: used to elect a new leader

* Normal operation: | leader, N-1 followers

Quick Detour: RPCs

e Raft servers communicate via RPCs.
* What are RPCs?

* Remote Procedure Calls: procedure call between functions
on different processes

* Convenient programming abstraction.

|."foo"’, args

Pl 3 reply P2

2. foo(args) {

return reply
P2.call("foo”, args, reply) }

Server States

* At any given time, each server Is erther:
* Leader: handles all client interactions, log replication
e At most | viable leader at a time

* Follower: completely passive: issues no RPCs, responds to
incoming RPCs

e Candidate: used to elect a new leader

* Normal operation: | leader, N-1 followers

timeout,
timeout, new election receive votes from

start start election majority of servers

— ()
Follower > CCandidate) <Leader >
ustep”\/
m discover server with

discover current server higher term
or higher term

Terms

Term 1 Term2 Term 3 Term 4 Term 5

time

* [ime divided Into terms:
* Election
* Normal operation under a single leader

* At most | leader per term

* Some terms have no leader (failed election)

* Fach server maintains value

* Key role of terms: identity obsolete information

Heartbeats and Timeouts

* Servers start up as followers

* Followers expect to receive RPCs from leaders or
candidates

* L eaders must send (empty AppendEntries
RPCs) to maintain authority

° |f elapses with no RPCs:
* Follower assumes leader has crashed

* Follower starts new election

* Timeouts typically 100-500ms

Election Basics

* On timeout:
* Increment current term
* Change to Candidate state
* Vote for self

* Send RequestVote RPCs to all other servers:
|, Receive votes from majority of servers:
* Become leader
* Send AppendEntries heartbeats (RPCs) to all other servers
2. Receive RPC from valid leader:
* Return to follower state
3. No-one wins election (election timeout elapses):
* Increment term, start new election

Elections, cont’d

. allow at most one winner per term
* Each server gives out only one vote per term (persist on

disk)

* Two different candidates can't accumulate majorities in same
term R |
e U U U O

Servers
: some candidate must eventually win

* Safety is guaranteed. Liveness is not.
* Election may result in a split vote — no candidate gets majority.

Elections, cont’d

. allow at most one winner per term
* Each server gives out only one vote per term (persist on

disk)

* Two different candidates can't accumulate majorities in same
term R |
e U U U O

Servers
: some candidate must eventually win

* Choose election timeouts randomly in [T, 2T]

* One server usually times out and wins election before others
wake up

* Works well if T >> broadcast time

* Safety is guaranteed. Liveness is not.
* Election may result in a split vote — no candidate gets majority.

Next Class

e Visualizations to better leader election with Raft.

* Raft's log replication algorithm.

MP2: Raft Leader Election and Log
Consensus

* https://courses.grainger.illinois.edu/cs425/sp202 | /mps/mp2.html

* Objective:
* Implement a leader-based consensus protocol for replicated state
machine, that maintains log consensus even when nodes crash or
get temporarily disconnected.

* Jask:
* Beef up a skeleton code provided to you to implement Raft leader
election and log consensus.
* We provide an emulation framework and a test suite.
* Strive to pass all the test cases provided in our test suite.

MP2: Logistics

* Due on Friday, April 9th.

* Allowed to submit up to 50 hours late, but with 2% penalty for
every late hour (rounded up).

* Must be implemented in Go.
* The framework we provide is in Go.

* Read the specification and the comments in the provided
code carefully.

* Start early!!
e MP2 is harder than MP/1.

