
Distributed Systems

CS425/ECE428

March 17 2021

Instructor : Radhika Mittal



Logistics

• MP1 is due today.

• MP2 was released today. Due on Friday, April 9th, 11:59pm.

• HW3 deadline extended to Friday, March 19th, 11:59pm.

• HW4 will be released on Friday. 

• Midterm I grades and solutions will be released early next 
week. 



Agenda for today
• Consensus

• Consensus in synchronous systems
• Chapter 15.4

• Impossibility of consensus in asynchronous systems
• We will not cover the proof in details

• Good enough consensus algorithm for asynchronous systems: 
• Paxos made simple, Leslie Lamport, 2001

• Other forms of consensus algorithm 
• Raft (log-based consensus)
• Block-chains (distributed consensus)



Recap

• Consensus is a fundamental problem in distributed 
systems.

• Possible to solve consensus in synchronous systems.
• Algorithm based on time-synchronized rounds.
• Need at least (f+1) rounds to handle up to f failures.

• Impossible to solve consensus is asynchronous systems.
• Cannot distinguish between a timeout and a very very slow 

process.
• Paxos algorithm: 

• Guarantees safety but not liveness. 
• Hopes to terminate if under good enough conditions. 



• Three types of roles:
• Proposers: propose values to acceptors.

• All or subset of processes. 
• Having a single proposer (leader) may allow faster termination. 

• Acceptors: accept proposed values (under certain conditions).
• All or subset of processes.

• Learners: learns the value that has been accepted by majority of 
acceptors. 

• All processes. 

Paxos Algorithm 



Paxos Algorithm

• Key condition:
• When majority of acceptors accept a single proposal with a 

value v, then that value v becomes the decided value. 
• This is an implicit decision. Learners may not know about it 

right-away. 
• Any higher-numbered proposal that gets accepted by majority of 

acceptors after the implicit decision must propose the same 
decided value. 



Paxos Algorithm: Two phases

• Phase 1: 
• A proposer selects a proposal number (n) and sends a prepare

request with n to majority of acceptors, requesting: 
• Promise me you will not reply to any other proposal with a lower 

number.
• Promise me you will not accept any other proposal with a lower 

number.
• If an acceptor receives a prepare request for proposal #n, and it 

has not responded to a prepare request with a higher number, it 
replies back saying:

• OK! I will make that promise for any request I receive in the future.
• (If applicable) I have already accepted a value v from a proposal with 

lower number m < n.  This proposal has the highest number among the 
ones I accepted so far.



Paxos Algorithm: Two phases

• Phase 2: 
• If a proposer receives an OK response for its prepare request 

#n from a majority of acceptors, then it sends an accept request 
with a proposed value. What is the proposed value? 

• The value v of the highest numbered proposal among the received 
responses. 

• Any value if no previously accepted value in the received responses.  
• If an acceptor receives an accept request for proposal #n, and it 

has not responded a prepare request with a higher number, it 
accepts the proposal.

• What if the proposer does not hear from majority of acceptors?
• Wait for some time, and then issue a new request with higher 

number.



Paxos Algorithm

• When majority of acceptors accept a single proposal with a value v, 
then that value v becomes the decided value. 

• Suppose this proposal has a number m.
• By design of the algorithm: any subsequent proposal with a number n higher than 

m will propose a value v. 
• Proof by induction:

• Induction hypothesis: every proposal with number in [m,…..n-1] proposes 
value v. 

• Consider a set C with majority of acceptors that have accepted m’s 
proposal (and value v). 

• Every acceptor in C has accepted a proposal with number in [m,…..n-1] . 
• Every acceptor in C has accepted a proposal with value v. 

• Any set consisting of a majority of acceptors has at least one member in 
C. 

• Proposal #n’s prepare request will receive an OK reply with value v. 



Paxos Algorithm

• When majority of acceptors accept a single proposal with a value v, 
then that value v becomes the decided value. 

• How do learners learn about it? 
• Every time an acceptor accepts a value, send the value and proposal # to a 

distinguished learner. 
• This distinguished learner will check if a decision has been reached and will 

inform other learners.
• When it receives the same value and proposal # from a majority of 

acceptors. 
• Use a set of distinguished learners to better handle failures.
• What happens if a message is lost or all distinguished learners fail?

• May not know that a decision has been reached. 
• A proposer will issue a new request (and will propose the same value). 

Acceptors will accept the same value and will notify the learner again. 



Paxos Algorithm
• Best strategy: elect a single leader who proposes values.

• Assume this leader is also the distinguished learner.

• What if we have multiple proposers? (leader election is not perfect is 
asynchronous systems)

• May have a livelock! Two proposers may keep pre-empting each-other’s 
requests by constantly sending new proposals with higher numbers.

• Safety is still guaranteed!

Prepare #1 OK!

Accept #1, v

OK!

decided v!
Proposer Distinguished Learner



Paxos Algorithm
• What if majority of acceptors fail before a value is decided?

• Algorithm does not terminate. 
• Safety is still guaranteed!

• What if a process fails and recover again?
• If it is an acceptor, it must remember highest number proposal it has accepted. 

• Acceptors log accepted proposal on the disk. 
• As long as this state can be retrieved after failure and recovery, algorithm 

works fine and safety is still guaranteed.

• Exercise: think about what else can go wrong and how would Paxos
handle that situation? 



Log Consensus

• Paxos algorithm (discussed so far) is used for deciding on a 
single value. 

• Many practical systems need to decide on a sequence of 
values (log). 



• Replicated log => replicated state machine
• All servers execute same commands in same order

• Consensus module ensures proper log replication

Replicated Log
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Log Consensus
• Paxos algorithm (discussed so far) is used for deciding on a 

single value. 

• Many practical systems need to decide on a sequence of 
values (log). 

• Multi-Paxos: run Paxos repeatedly for each log entry.
• Quickly becomes very complex.
• Performance optimizations further increase the complexity. 



“The dirty little secret of the NSDI* community is that at most 
five people really, truly understand every part of Paxos ;-).”
– Anonymous NSDI reviewer

*The USENIX Symposium on Networked Systems
Design and Implementation

Paxos is difficult to understand 



“There are significant gaps between the description of the 
Paxos algorithm and the needs of a real-world system…the 
final system will be based on an unproven protocol.”
– Chubby authors

Paxos is difficult to implement



Agenda for today
• Consensus

• Consensus in synchronous systems
• Chapter 15.4

• Impossibility of consensus in asynchronous systems
• We will not cover the proof in details

• Good enough consensus algorithm for asynchronous systems: 
• Paxos made simple, Leslie Lamport, 2001

• Other forms of consensus algorithm 
• Raft (log-based consensus)
• Block-chains (distributed consensus)



Raft: A Consensus 
Algorithm

for Replicated Logs

Slides from Diego Ongaro and John Ousterhout, Stanford University



• Replicated log => replicated state machine
• All servers execute same commands in same order

• Consensus module ensures proper log replication
• System makes progress as long as any majority of servers are up

• Failure model: fail-stop (not Byzantine), delayed/lost messages

Goal: Replicated Log
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Goal: Design for understandability

• Main objective of Raft’s design
• Whenever possible, select the alternative that is the 

easiest to understand.

• Techniques that were used include
• Dividing problems into smaller problems.
• Reducing the number of system states to consider.



Two general approaches to consensus:
• Symmetric, leader-less:

• All servers have equal roles
• Clients can contact any server

• Asymmetric, leader-based:
• At any given time, one server is in charge, others accept its 

decisions
• Clients communicate with the leader

• Raft uses a leader:
• Decomposes the problem (normal operation, leader changes)
• Simplifies normal operation (no conflicts)
• More efficient than leader-less approaches

Approaches to Consensus



1. Leader election:
• Select one of the servers to act as leader
• Detect crashes, choose new leader

2. Normal operation (basic log replication)
3. Safety and consistency after leader changes
4. Neutralizing old leaders

Raft Overview
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• At any given time, each server is either :
• Leader: handles all client interactions, log replication

• At most 1 viable leader at a time
• Follower: completely passive: issues no RPCs (requests), 

responds to incoming RPCs 
• Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

Server States



• Raft servers communicate via RPCs. 
• What are RPCs?

• Remote Procedure Calls: procedure call between functions 
on different processes 

• Convenient programming abstraction.

Quick Detour: RPCs

P1 P2

P2.call(“foo”, args, reply) 

1. “foo”, args 2. foo(args) {
….
….
return reply

}

3. reply



• At any given time, each server is either :
• Leader: handles all client interactions, log replication

• At most 1 viable leader at a time
• Follower: completely passive: issues no RPCs, responds to 

incoming RPCs 
• Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

March	3,	2013

Server States

Follower Candidate Leader

start
timeout,
start	election

receive	votes	from
majority	of	servers

timeout,
new	election

discover	server	with
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down”



• Time divided into terms:
• Election
• Normal operation under a single leader

• At most 1 leader per term
• Some terms have no leader (failed election)
• Each server maintains current term value
• Key role of terms: identify obsolete information

Terms
Term	1 Term	2 Term	3 Term	4 Term	5

time

Elections Normal	OperationSplit	Vote



• Servers start up as followers
• Followers expect to receive RPCs from leaders or 

candidates
• Leaders must send heartbeats (empty AppendEntries

RPCs) to maintain authority
• If electionTimeout elapses with no RPCs:

• Follower assumes leader has crashed
• Follower starts new election
• Timeouts typically 100-500ms

Heartbeats and Timeouts



• On timeout:
• Increment current term
• Change to Candidate state
• Vote for self
• Send RequestVote RPCs to all other servers:

1. Receive votes from majority of servers:
• Become leader
• Send AppendEntries heartbeats (RPCs) to all other servers

2. Receive RPC from valid leader:
• Return to follower state

3. No-one wins election (election timeout elapses):
• Increment term, start new election

Election Basics



• Safety:  allow at most one winner per term
• Each server gives out only one vote per term (persist on 

disk)
• Two different candidates can’t accumulate majorities in same 

term

• Liveness: some candidate must eventually win
• Choose election timeouts randomly in [T, 2T]
• One server usually times out and wins election before others 

wake up
• Works well if T >> broadcast time

• Safety is guaranteed. Liveness is not. 
• Election may result in a split vote – no candidate gets majority.

Elections, cont’d

Servers

Voted	for	
candidate	A

B	can’t	also	get	
majority
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Next Class

• Visualizations to better leader election with Raft.

• Raft’s log replication algorithm.



MP2: Raft Leader Election and Log 
Consensus
• https://courses.grainger.illinois.edu/cs425/sp2021/mps/mp2.html

• Objective:
• Implement a leader-based consensus protocol for replicated state 

machine, that maintains log consensus even when nodes crash or 
get temporarily disconnected. 

• Task:
• Beef up a skeleton code provided to you to implement Raft leader 

election and log consensus.
• We provide an emulation framework and a test suite. 
• Strive to pass all the test cases provided in our test suite.



MP2: Logistics

• Due on Friday, April 9th.
• Allowed to submit up to 50 hours late, but with 2% penalty for 

every late hour (rounded up). 

• Must be implemented in Go. 
• The framework we provide is in Go.

• Read the specification and the comments in the provided 
code carefully. 

• Start early!!
• MP2 is harder than MP1. 


