
Distributed Systems

CS425/ECE428

March 17 2021

Instructor : Radhika Mittal

Logistics

• MP1 is due today.

• MP2 was released today. Due on Friday, April 9th, 11:59pm.

• HW3 deadline extended to Friday, March 19th, 11:59pm.

• HW4 will be released on Friday.

• Midterm I grades and solutions will be released early next
week.

Agenda for today
• Consensus

• Consensus in synchronous systems
• Chapter 15.4

• Impossibility of consensus in asynchronous systems
• We will not cover the proof in details

• Good enough consensus algorithm for asynchronous systems:
• Paxos made simple, Leslie Lamport, 2001

• Other forms of consensus algorithm
• Raft (log-based consensus)
• Block-chains (distributed consensus)

Recap

• Consensus is a fundamental problem in distributed
systems.

• Possible to solve consensus in synchronous systems.
• Algorithm based on time-synchronized rounds.
• Need at least (f+1) rounds to handle up to f failures.

• Impossible to solve consensus is asynchronous systems.
• Cannot distinguish between a timeout and a very very slow

process.
• Paxos algorithm:

• Guarantees safety but not liveness.
• Hopes to terminate if under good enough conditions.

• Three types of roles:
• Proposers: propose values to acceptors.

• All or subset of processes.
• Having a single proposer (leader) may allow faster termination.

• Acceptors: accept proposed values (under certain conditions).
• All or subset of processes.

• Learners: learns the value that has been accepted by majority of
acceptors.

• All processes.

Paxos Algorithm

Paxos Algorithm

• Key condition:
• When majority of acceptors accept a single proposal with a

value v, then that value v becomes the decided value.
• This is an implicit decision. Learners may not know about it

right-away.
• Any higher-numbered proposal that gets accepted by majority of

acceptors after the implicit decision must propose the same
decided value.

Paxos Algorithm: Two phases

• Phase 1:
• A proposer selects a proposal number (n) and sends a prepare

request with n to majority of acceptors, requesting:
• Promise me you will not reply to any other proposal with a lower

number.
• Promise me you will not accept any other proposal with a lower

number.
• If an acceptor receives a prepare request for proposal #n, and it

has not responded to a prepare request with a higher number, it
replies back saying:

• OK! I will make that promise for any request I receive in the future.
• (If applicable) I have already accepted a value v from a proposal with

lower number m < n. This proposal has the highest number among the
ones I accepted so far.

Paxos Algorithm: Two phases

• Phase 2:
• If a proposer receives an OK response for its prepare request

#n from a majority of acceptors, then it sends an accept request
with a proposed value. What is the proposed value?

• The value v of the highest numbered proposal among the received
responses.

• Any value if no previously accepted value in the received responses.
• If an acceptor receives an accept request for proposal #n, and it

has not responded a prepare request with a higher number, it
accepts the proposal.

• What if the proposer does not hear from majority of acceptors?
• Wait for some time, and then issue a new request with higher

number.

Paxos Algorithm

• When majority of acceptors accept a single proposal with a value v,
then that value v becomes the decided value.

• Suppose this proposal has a number m.
• By design of the algorithm: any subsequent proposal with a number n higher than

m will propose a value v.
• Proof by induction:

• Induction hypothesis: every proposal with number in [m,…..n-1] proposes
value v.

• Consider a set C with majority of acceptors that have accepted m’s
proposal (and value v).

• Every acceptor in C has accepted a proposal with number in [m,…..n-1] .
• Every acceptor in C has accepted a proposal with value v.

• Any set consisting of a majority of acceptors has at least one member in
C.

• Proposal #n’s prepare request will receive an OK reply with value v.

Paxos Algorithm

• When majority of acceptors accept a single proposal with a value v,
then that value v becomes the decided value.

• How do learners learn about it?
• Every time an acceptor accepts a value, send the value and proposal # to a

distinguished learner.
• This distinguished learner will check if a decision has been reached and will

inform other learners.
• When it receives the same value and proposal # from a majority of

acceptors.
• Use a set of distinguished learners to better handle failures.
• What happens if a message is lost or all distinguished learners fail?

• May not know that a decision has been reached.
• A proposer will issue a new request (and will propose the same value).

Acceptors will accept the same value and will notify the learner again.

Paxos Algorithm
• Best strategy: elect a single leader who proposes values.

• Assume this leader is also the distinguished learner.

• What if we have multiple proposers? (leader election is not perfect is
asynchronous systems)

• May have a livelock! Two proposers may keep pre-empting each-other’s
requests by constantly sending new proposals with higher numbers.

• Safety is still guaranteed!

Prepare #1 OK!

Accept #1, v

OK!

decided v!
Proposer Distinguished Learner

Paxos Algorithm
• What if majority of acceptors fail before a value is decided?

• Algorithm does not terminate.
• Safety is still guaranteed!

• What if a process fails and recover again?
• If it is an acceptor, it must remember highest number proposal it has accepted.

• Acceptors log accepted proposal on the disk.
• As long as this state can be retrieved after failure and recovery, algorithm

works fine and safety is still guaranteed.

• Exercise: think about what else can go wrong and how would Paxos
handle that situation?

Log Consensus

• Paxos algorithm (discussed so far) is used for deciding on a
single value.

• Many practical systems need to decide on a sequence of
values (log).

• Replicated log => replicated state machine
• All servers execute same commands in same order

• Consensus module ensures proper log replication

Replicated Log

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

Servers

Clients

shl

Log Consensus
• Paxos algorithm (discussed so far) is used for deciding on a

single value.

• Many practical systems need to decide on a sequence of
values (log).

• Multi-Paxos: run Paxos repeatedly for each log entry.
• Quickly becomes very complex.
• Performance optimizations further increase the complexity.

“The dirty little secret of the NSDI* community is that at most
five people really, truly understand every part of Paxos ;-).”
– Anonymous NSDI reviewer

*The USENIX Symposium on Networked Systems
Design and Implementation

Paxos is difficult to understand

“There are significant gaps between the description of the
Paxos algorithm and the needs of a real-world system…the
final system will be based on an unproven protocol.”
– Chubby authors

Paxos is difficult to implement

Agenda for today
• Consensus

• Consensus in synchronous systems
• Chapter 15.4

• Impossibility of consensus in asynchronous systems
• We will not cover the proof in details

• Good enough consensus algorithm for asynchronous systems:
• Paxos made simple, Leslie Lamport, 2001

• Other forms of consensus algorithm
• Raft (log-based consensus)
• Block-chains (distributed consensus)

Raft: A Consensus
Algorithm

for Replicated Logs

Slides from Diego Ongaro and John Ousterhout, Stanford University

• Replicated log => replicated state machine
• All servers execute same commands in same order

• Consensus module ensures proper log replication
• System makes progress as long as any majority of servers are up

• Failure model: fail-stop (not Byzantine), delayed/lost messages

Goal: Replicated Log

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

Servers

Clients

shl

Goal: Design for understandability

• Main objective of Raft’s design
• Whenever possible, select the alternative that is the

easiest to understand.

• Techniques that were used include
• Dividing problems into smaller problems.
• Reducing the number of system states to consider.

Two general approaches to consensus:
• Symmetric, leader-less:

• All servers have equal roles
• Clients can contact any server

• Asymmetric, leader-based:
• At any given time, one server is in charge, others accept its

decisions
• Clients communicate with the leader

• Raft uses a leader:
• Decomposes the problem (normal operation, leader changes)
• Simplifies normal operation (no conflicts)
• More efficient than leader-less approaches

Approaches to Consensus

1. Leader election:
• Select one of the servers to act as leader
• Detect crashes, choose new leader

2. Normal operation (basic log replication)
3. Safety and consistency after leader changes
4. Neutralizing old leaders

Raft Overview

1. Leader election:
• Select one of the servers to act as leader
• Detect crashes, choose new leader

2. Normal operation (basic log replication)
3. Safety and consistency after leader changes
4. Neutralizing old leaders

Raft Overview

• At any given time, each server is either :
• Leader: handles all client interactions, log replication

• At most 1 viable leader at a time
• Follower: completely passive: issues no RPCs (requests),

responds to incoming RPCs
• Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

Server States

• Raft servers communicate via RPCs.
• What are RPCs?

• Remote Procedure Calls: procedure call between functions
on different processes

• Convenient programming abstraction.

Quick Detour: RPCs

P1 P2

P2.call(“foo”, args, reply)

1. “foo”, args 2. foo(args) {
….
….
return reply

}

3. reply

• At any given time, each server is either :
• Leader: handles all client interactions, log replication

• At most 1 viable leader at a time
• Follower: completely passive: issues no RPCs, responds to

incoming RPCs
• Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

March	3,	2013

Server States

Follower Candidate Leader

start
timeout,
start	election

receive	votes	from
majority	of	servers

timeout,
new	election

discover	server	with
higher	termdiscover	current	server

or	higher	term

“step
down”

• Time divided into terms:
• Election
• Normal operation under a single leader

• At most 1 leader per term
• Some terms have no leader (failed election)
• Each server maintains current term value
• Key role of terms: identify obsolete information

Terms
Term	1 Term	2 Term	3 Term	4 Term	5

time

Elections Normal	OperationSplit	Vote

• Servers start up as followers
• Followers expect to receive RPCs from leaders or

candidates
• Leaders must send heartbeats (empty AppendEntries

RPCs) to maintain authority
• If electionTimeout elapses with no RPCs:

• Follower assumes leader has crashed
• Follower starts new election
• Timeouts typically 100-500ms

Heartbeats and Timeouts

• On timeout:
• Increment current term
• Change to Candidate state
• Vote for self
• Send RequestVote RPCs to all other servers:

1. Receive votes from majority of servers:
• Become leader
• Send AppendEntries heartbeats (RPCs) to all other servers

2. Receive RPC from valid leader:
• Return to follower state

3. No-one wins election (election timeout elapses):
• Increment term, start new election

Election Basics

• Safety: allow at most one winner per term
• Each server gives out only one vote per term (persist on

disk)
• Two different candidates can’t accumulate majorities in same

term

• Liveness: some candidate must eventually win
• Choose election timeouts randomly in [T, 2T]
• One server usually times out and wins election before others

wake up
• Works well if T >> broadcast time

• Safety is guaranteed. Liveness is not.
• Election may result in a split vote – no candidate gets majority.

Elections, cont’d

Servers

Voted	for	
candidate	A

B	can’t	also	get	
majority

• Safety: allow at most one winner per term
• Each server gives out only one vote per term (persist on

disk)
• Two different candidates can’t accumulate majorities in same

term

• Liveness: some candidate must eventually win
• Choose election timeouts randomly in [T, 2T]
• One server usually times out and wins election before others

wake up
• Works well if T >> broadcast time

• Safety is guaranteed. Liveness is not.
• Election may result in a split vote – no candidate gets majority.

Elections, cont’d

Servers

Voted	for	
candidate	A

B	can’t	also	get	
majority

Next Class

• Visualizations to better leader election with Raft.

• Raft’s log replication algorithm.

MP2: Raft Leader Election and Log
Consensus
• https://courses.grainger.illinois.edu/cs425/sp2021/mps/mp2.html

• Objective:
• Implement a leader-based consensus protocol for replicated state

machine, that maintains log consensus even when nodes crash or
get temporarily disconnected.

• Task:
• Beef up a skeleton code provided to you to implement Raft leader

election and log consensus.
• We provide an emulation framework and a test suite.
• Strive to pass all the test cases provided in our test suite.

MP2: Logistics

• Due on Friday, April 9th.
• Allowed to submit up to 50 hours late, but with 2% penalty for

every late hour (rounded up).

• Must be implemented in Go.
• The framework we provide is in Go.

• Read the specification and the comments in the provided
code carefully.

• Start early!!
• MP2 is harder than MP1.

