Distributed Systems

CS425/ECE428

March 5 202 |

Instructor: Radhika Mittal



Logistics

e HW3 released.

* You can solve the first two questions right-away.
* You should be able to solve the last two questions by the end of
next week.



Today’s agenda

* Wrap up Mutual Exclusion
* Extending Maekawa's algorithm to break deadlocks.

* Exam Review



Today’s agenda

* Wrap up Mutual Exclusion
* Extending Maekawa's algorithm to break deadlocks.



Mutual exclusion in distributed systems

* Classical algorithms for mutual exclusion in distributed
systems.

* Central server algorithm

* Ring-based algorithm

* Ricart-Agrawala Algorithm
* Maekawa Algorithm




Maekawa Algorithm: Actions

e state = Released, voted = false

* enter() at process Pr:
* state = VWanted
* Multicast Request message to all processes inVi

* Wait for Reply (vote) messages from all processes inVi
(including vote from self)

e state = Held

* exit() at process Pi
* state = Released
* Multicast Release to all processes InVi




Maekawa Algorithm:Actions (contd.)

* When Pi receives a Request from P:
if (state == Held OR = true)
queue Request
else
send Reply to Pj and set = true

* When Pi receives a Release from Pj:
if (queue empty)
= false
else
dequeue head of queue, say Pk
Send Reply only to Pk
= true



Analysis: Maekawa Algorithm

* Safety:

* When a process Pi receives replies from all its voting set Vi
members, no other process Pj could have received replies
from all its voting set membersVj.

e | lveness
 Not satisfied. Can have deadlock!

* Ordering:
e Not satisfied.



Breaking deadlocks

* Maekawa algorithm can be extended to break deadlocks.

¢ Compare Lamport timestamps before replying (like Ricart-Agrawala).

* But is that enough!?
* System of 6 processes {0,1,2,3,4,5}. 0,1,2 want to enter critical section:

* Vo=1{0 1,2}:0,2 send reply to O, but | sends reply to I;
 V,={l,3,5} 1,3 send reply to |, but 5 sends reply to 2;

* V,={2,4,5}: 4,5 send reply to 2, but 2 sends reply to 0;

* Suppose (LI, Pl) < (LO,PO) < (L2, P2).
* Deadlock can still happen based on when messages are received.
* P5 receives P2's request before Pl’s, and replies back to P2 first.

* We need a way to take back the reply.



Breaking deadlocks

Say Pi's request has a smaller timestamp than P;.
f Pk receives Pj's request after replying to Pi, send fail to P
If Px receives Pi's request after replying to Pj, send inquire to P

It Pj receives an inquire and at least one falil, it sends a relinquish to release
locks, and deadlock breaks.



Breaking deadlocks

* System of 6 processes {0, 1,2,3,4,5}. 0,1,2 want to enter critical section:
* V=10, 1,2}:0,2 send reply to 0, but | sends reply to I;
 V,={l,3,5} 1,3 send reply to |, but 5 sends reply to 2;

* V,={2,4,5}:4,5 send reply to 2, but 2 sends reply to 0;

Suppose (LI, Pl) < (LO, PO) < (L2, P2).

P2 will send fall to itself when it receives its own request after PO.

P5 will send inquire to P2 when it receives Pl's request.

P2 will send relinquish to V,. P5 and P4 will set “voted = false”. P5 will reply
to PI.

Pl can now enter CS, followed by PO, and then P2.



Mutual exclusion in distributed systems

* Classical algorithms for mutual exclusion in distributed systems.
* Central server algorithm
* Satisfies safety, liveness, but not ordering.
* O(l) bandwidth, and O(1) client and synchronization delay.
* Central server is scalability bottleneck.
* Ring-based algorithm
* Satisfies safety, liveness, but not ordering.
* Always uses bandwidth, O(N) client and synchronization delay
* Ricart-Agrawala algorithm
* Satisfies safety, liveness, and ordering.
* O(N) bandwidth, O(I) client and synchronization delay.
* Maekawa algorithm
* Satisfies safety, but not liveness and ordering.
¢ O(WN) bandwidth, O(1) client and synchronization delay.



Today’s agenda

* Exam Review



Midterm | on Monday, March 8, 7-8:50pm

* Detailled instructions shared on CampusWire.
* Go over them again.

e | have added a few more clarifications.

* Syllabus:
* everything up to and including Multicast.

* includes everything we covered under Multicast.
o Until ~first half of Feb 26 lecture.



Disclaimer for our agenda today

* Quick reminder of the relevant concepts we
covered In class, that are included in first midterm.

e Not meant to be an exhaustive review!

* Go over the slides for each class.
* Refer to lecture videos and textbook to fill in gaps In
understanding.



Topics for first midterm

* System model and Fallures

* Fallure Detection

* Clock Synchronization

* Event ordering and Logical Timestamps
* Global Snapshot

* Multicast



Topics for first midterm

* System model and Failures

* Fallure Detection

* Clock Synchronization

* Event ordering and Logical Timestamps
* Global Snapshot

* Multicast



What is a distributed system?

process

Independent components that are connected by a network
and communicate by passing messages to achieve a common
goal, appearing as a single coherent system.



Relationship between processes

* [wo broad categories:

* Client-server:
* different roles/responsiblilities.

* Peer-to-peer:
* similar role/responsibility.
* run the same program/algorithm.



Key aspects of a distributed system

* Processes must communicate with one another to coordinate actions.
* Communication channel between each pair of processes.
* Time taken to transmit a message over a communication channel

may vary.

* Different processes (on different computers) have different clocks.
* These clocks drift from real time at different rates.

* Processes and communication channels may fail.



Two ways to model

* Synchronous distributed systems:
* Known upper and lower bounds on time taken by each step in a
process.
* Known bounds on message passing delays.
* Known bounds on clock drift rates.

* Asynchronous distributed system:s:
* No bounds on process execution speeds.
* No bounds on message passing delays.
* No bounds on clock drift rates.



Types of failure

* Omission: when a process or a channel fails to perform
actions that i1t i1s supposed to do.
* Process may crash.
* Fail-stop: if other processes can detect that the process
has crashed.
* Communication omission; a message sent by process was
not received by another.
* Arbitrary (Byzantine) Failures: any type of error, e.g. a
process executing incorrectly, sending a wrong message, etc.
* Timing Failures: Timing guarantees are not met.
* Applicable only in synchronous systems.



Topics for first midterm

* Failure Detection

* Clock Synchronization

* Event ordering and Logical Timestamps
* Global Snapshot

* Multicast



How to detect a crashed process?

Periodic ping
p q
ack

p sends pings to g every T seconds (T = period).
If p doesn't receive an ack after sending a ping within a specified timeout,
declare g has failed.

Periodic
heartbeats
g

g sends heartbeats to p every T seconds (T = period).
If p doesn't receive a heartbeat from q for a specified timeout,
declare g has failed.




Computing timeout values

* Can precisely compute timeout value in synchronous

systems.
* |In the worst case, how long would take to receive an ack after
sending a ping!
* In the worst case, what Is the maximum time gap between two
consecutive heartbeats!

* Can estimate timeout value based on observed round-trip
times in asynchronous systems.



Metrics for evaluating failure detector

* Correctness:
* Completeness: Every falled process is eventually detected.
* Accuracy: bvery detected failure corresponds to a crashed
process (no mistakes).

* Performance:
* Worst-case failure detection time: maximum time gap between
when a failure occurs to when It is detected.
* Bandwidth usage: No. of messages exchanged for failure
detection per unit time.



Extending to a system of N processes

* Centralized heartbeat
* All processes send heartbeats to a central server.

* Ring-based fallure detector
* A process sends heartbeats to Its ring successor.

* All-to-all failure detector
* All processes send heartbeats to each-other.

Trade-off in completeness and bandwidth usage.



Topics for first midterm

* Clock Synchronization

* Event ordering and Logical Timestamps
* Global Snapshot

* Multicast



Clock Skew and Drift Rates

* Fach process has an internal clock.

* Clocks between processes on different computers differ:
e Clock skew:
* relative difference between two clock values.
e Clock drift rate:

* change in skew from a perfect reference clock per unit time
(measured by the reference clock).



Clock synchronization

* External synchronization
* Synchronize time with an authoritative clock.

* Internal synchronization
* Synchronize time internally between all processes in a distributed
system.

* Synchronization bound (D) between two clocks A and B over a real
time interval .
* |A(t) — B(t)| < D, forall tin the real time interval |.
* Skew(A, B) < D during the time interval |.

* Important metric: worst-case skew right after synchronization.



Clock Synchronization

m_:VWhat is the time?

client , server
m:ltis T,

What time T, should client adjust its local clock to after receiving m ?

r

m e

T.=T,+A

But the value of A Is unknown.



Clock synchronization

* In a synchronous system:
* use known maximum and minimum network delays to
find the A value that results in smallest worst-case skew.

* In asynchronous system:
* Use observed round-trip time (RTT).
* Cristian algorithm: Estimates A as RTT/2.
* What is the worst-case skew!?



Other clock synchronization protocols

* Berkeley algorithm for internal synchronization.
* Central server collects and estimates local timestamps, computes
updated time as average of estimated local times, and disseminates
offsets from updated time.

* Network Time Protocol:
* External time synchronization service over the Internet.
* Symmetric mode synchronization:
* Two servers exchange a pair of messages (A to Band Bto A)
* Estimate offset and accuracy bound using the send and receive
timestamps at A and B for both messages.



Topics for first midterm

* Event ordering and Logical Timestamps
* Global Snapshot
* Multicast



Happened-Before Relationship

* Happened-before (HB) relationship denoted by —.
* e = € means e happened before €.
* e >. e means e happened before €', as observed by p;.

* HB rules:

*|f3p,e—> e thene—> e’

* For any message m, send(m) — receive(m)
*lfe—>eande > e’ thene - ¢”

* Also called “causal” relationship.



Lamport’s Logical Clock

Logical timestamp for each event that captures the happened-before
relationship.

Each process maintains a single integer clock to logically timestamp
each event.

Checkout algorithm to assign Lamport timestamps.

If e — e’ then L(e) < L(€).

* What can we conclude if L(e) < L(e’)!



Vector Clocks

Each process maintains vector of clocks V,
* Vi[j] is the clock for process p,

Checkout algorithm to assign vector timestamps.
Let V(e) =V and V(e') =V’

e V=V’ iff VI[i]=V[i],foralli=1,...,n

e VIV, iff V[i] £V[i],foralli=1,...,n

e V<V, iff VSV &V =V

it V<V &3 jsuch that (V[j] <V’[j])

e > eiff V<V

* (e > € mpliesV<V)and (V< V impliese — ¢’)
el|| e iff (V«.V and V' «V)



Topics for first midterm

* Global Snapshot
* Multicast



Global snapshot

* State of each process (and each channel) in the system at a given
instant of time.

* Difficult to capture a global snapshot of the system.
* Requires precise clock synchronization across processes.

* How do we capture global snapshots without precise time
synchronization across processes?
* Relax the requirement for capturing the state of different
processes and channels at the same real time instant.
* As long as the global state Is consistent, it is still useful in reasoning
about properties of the system.



Notations and Definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p¥) = hk=<e0e!,...,ek>

s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:

global history: H = U, (h))
acutCcH=hsUh%U...UhFS%

the frontier of C = {e%,i = |,2, ... n}

global state S that corresponds to cut C = U, (s:%)



Notations and definitions

* A cut Cis consistent if and only if
Ve e C (iff > ethenf e C)

* A global state S is consistent if and only if it corresponds
to a consistent cut.



Notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h.'s ordering.

* A linearization is a run consistent with happens-before
(—) relation in H.

* Linearizations pass through consistent global states.

* Execution lattice: a way to reason about linearizations and
the set of all consistent global states.



Chandy-Lamport Algorithm

* Records a consisted global snapshot
* identifies a consistent cut.

* Key system assumptions:

* Two uni-directional communication channels between each
ordered process pair: p;to p; and p; to p;.

* Communication channels are FIFO-ordered (first in first out).

* No fallures (messages are not dropped, process doesn't crash).

* Checkout the algorithm!



Chandy-Lamport Algorithm

* Records a consisted global snapshot
* identifies a consistent cut.

* Key system assumptions:

* Two uni-directional communication channels between each
ordered process pair: p;to p; and p; to p;.

* Communication channels are FIFO-ordered (first in first out).

* No fallures (messages are not dropped, process doesn't crash).

* Useful for reasoning about system properties.



Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* A distributed computation will terminate.
* "Completeness” in fallure detectors: the failure will be detected.

* All processes will eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S| & P(5)) = true
* For any linearization starting from S, P Is true for some state S,
reachable from S,



Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.

* "Accuracy’ in fallure detectors: an alive process is not detected as
falled.

* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:
* safety(P(Sy)) = VS reachable from S, P(S) = true.
* For all states S reachable from S, P(5) I1s true.



Stable Global Predicates

* once true, stays true forever afterwards (for stable liveness)
* True for a state S, true for all states reachable from S.

* once false, stays false forever afterwards (for stable non-safety)
* False for a state S, false for all states reachable from S.

* All stable global properties can be detected using the Chandy-
Lamport algorithm.



Topics for first midterm

 Multicast



Multicast Protocol

Distinction between
when a message
arrives at process p’s
node
\ v
4 ! when the message Is
delivered to the
application at p.

Application
(at process p)

It is the message

| . delivery that matters!
ncoming

mesSsages



Basic Multicast (B-Multicast)

* Straightforward way to implement B-multicast:
* use a reliable one-to-one send (unicast) operation:
B-multicast(group g, message m):
for each process p in g, send (p,m).
receive(m): B-deliver(m) at p.
* Guarantees: message Is eventually delivered to the group If:
* Processes are non-faulty.
* The unicast “send” Is reliable.
* Sender does not crash.

* Can we provide reliable delivery even after sender crashes?



Reliable Multicast (R-Multicast)

* Integrity: A correct (l.e., non-faulty) process p delivers a message 1 at
mMost once.

* Assumption: no process sends exactly the same message twice
* Validity: If a correct process multicasts (sends) message 111, then it will
deliver m rtself.
* Liveness for the sender.
* Agreement: If a correct process delivers message 111, then all the other
correct processes in group(m) will deliver
* All or nothing,
* Validity and agreement together ensure overall liveness: if some

correct process multicasts a message m, then, all correct processes
deliver m too.



Implementing R-Multicast

On inrtialization
Received := {};
For process p to R-multicast message m to group g
B-multicast(g,m); (p& g is included as destination)
On B-deliver(m) at process g with ¢ = group(m)
if (m & Received):
Received := Received U {m};
it (g # p): B-multicast(g,m);
R-deliver(m)



Ordered Multicast

* FIFO ordering: If a correct process Issues multicast(g,m) and
then multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

* Causal ordering: If multicast(g,m) = multicast(g,m’) then any
correct process that delivers m’ will have already delivered m.

* Note that = counts messages multicast delivered to the application,
rather than all network messages.

* Total ordering: If a correct process delivers message m before
m’, then any other correct process that delivers m’ will have
already delivered m.



HB Relationship for Causal Ordering

e HB rules in causal ordered multicast:

*|f3p ,e—> e thene > e
* If 3 p,, multicast(g,m) —; multicast(g,m’), then multicast(g,m) — multicast(g,m’)
* If 3 p,, delivery(m) —, multicast(g,m’), then delivery(m) — multicast(g,m’)

* For any multicast message m, multicast(g,m) — delivery(m)
lfe—>e ande » e’ thene = €”

* multicast(g,m) — delivery(m)

* delivery(m) —; multicast(g,m’)

* multicast(g,m) — multicast(g,m’)

* Application can only see when messages are sent (multicast) and
delivered, not when they are received at the protocol.



Implementing Ordered Multicast

e Basic idea:

* Sequence number (or vector, In case of causal-ordered multicast)
associated which each multicast message.

* Multicast protocol buffers the message until the conditions for
the next expected sequence number/vector are satisfied.

* Two ways to implement total-ordered multicast:
* Central server based algorithm
* Decentralized ISIS algorithm

* Checkout algorithms to implement FIFO, Causal, and Total
ordered multicasts.



Underlying multicast mechanisms

* Unicast to each process in the group.

* [ree-based multicast.

* Construct a minimum spanning tree of processes and unicast along the
tree.

* Gossip

* Fach process sends a message to ‘b’ random processes.



Topics for first midterm

* System model and Fallures

* Fallure Detection

* Clock Synchronization

* Event ordering and Logical Timestamps
* Global Snapshot

* Multicast

Good luck!



