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Logistics

• Complete your midterm 1 reservation on CBTF. 
• More detailed instructions posted on CampusWire. 

• HW2 is due tomorrow 11:59pm.
• We will release the solutions Saturday midnight / Sunday 

morning.



Today’s agenda

•Mutual Exclusion
• Chapter 15.2

• Leader Election (if time)
• Chapter 15.3



Problem Statement for mutual exclusion

• Critical Section Problem: 
• Piece of code (at all processes) for which we 

need to ensure there is at most one process
executing it at any point of time.

• Each process can call three functions
• enter() to enter the critical section (CS)
• AccessResource() to run the critical section code
• exit() to exit the critical section 



Mutual exclusion in distributed systems

• Processes communicating by passing messages.

• Cannot share variables like semaphores!

• How do we support mutual exclusion in a distributed 
system?



Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual 
exclusion in distributed systems. 
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm 



System Model

• Each pair of processes is connected by reliable 
channels (such as TCP). 

• Messages sent on a channel are eventually delivered 
to recipient, and in FIFO (First In First Out) order.

• Processes do not fail.
• Fault-tolerant variants exist in literature.



Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual 
exclusion in distributed systems. 
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm 



Analysis of Central Algorithm

• Safety – at most one process in CS
• Exactly one token

• Liveness – every request for CS granted eventually
• With N processes in system, queue has at most N 

processes
• If each process exits CS eventually and no failures, liveness 

guaranteed
• Ordering:
• FIFO ordering guaranteed in order of requests received at 

leader
• Not in the order in which requests were sent or the 

order in which processes enter CS!



Analyzing Performance
Three metrics:

• Bandwidth: the total number of messages sent in each enter and 
exit operation.

• Client delay: the delay incurred by a process at each enter and 
exit operation (when no other process is in CS, or waiting)
• We will focus on the client delay for the enter operation.

• Synchronization delay: the time interval between one process 
exiting the critical section and the next process entering it (when 
there is only one process waiting). Measure of the throughput of the 
system. 



Analysis of Central Algorithm
• Bandwidth: the total number of messages sent in each enter and exit 

operation.
• 2 messages for enter 
• 1 message for exit

• Client delay: the delay incurred by a process at each enter and exit 
operation (when no other process is in, or waiting)
• 2 message latencies or 1 round-trip (request + grant) on enter. 

• Synchronization delay: the time interval between one process 
exiting the critical section and the next process entering it (when 
there is only one process waiting)
• 2 message latencies (release + grant) 



Limitations of Central Algorithm

• The leader is the performance bottleneck and single point of 
failure.



Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual 
exclusion in distributed systems. 
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm 



Ring-based Mutual Exclusion
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Ring-based Mutual Exclusion
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Ring-based Mutual Exclusion

• N Processes organized in a virtual ring
• Each process can send message to its successor in ring
• Exactly 1 token
• enter()
• Wait until you get token

• exit() // already have token
• Pass on token to ring successor

• If receive token, and not currently in enter(), just pass on 
token to ring successor



Analysis of Ring-based algorithm

• Safety
• Exactly one token

• Liveness
• Token eventually loops around ring and reaches requesting 

process (we assume no failures)
• Ordering
• Token not always obtained in order of enter events. 



Analysis of Ring-based algorithm

• Safety
• Exactly one token

• Liveness
• Token eventually loops around ring and reaches requesting 

process (we assume no failures)
• Ordering
• Token not always obtained in order of enter events. 



Analysis of Ring-based algorithm

• Bandwidth
• Per enter, 1 message at requesting process but up to N 

messages throughout system.
• 1 message sent per exit.
• Constantly consumes bandwidth even when no process requires 

entry to the critical section (except when a process is executing 
critical section).



Analysis of Ring-based algorithm
• Client delay: 
• Best case: just received token
• Worst case: just sent token to neighbor
• 0 to N message transmissions after entering enter()

• Synchronization delay between one process’ exit() from the 
CS and the next process’ enter(): 
• Best case: process in enter() is successor of process in 

exit()
• Worst case: process in enter() is predecessor of process in 

exit()
• Between 1 and (N-1) message transmissions.

• Can we improve upon this O(n) client and synchronization delays? 



Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual 
exclusion in distributed systems. 
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm 



Ricart-Agrawala’s Algorithm

• Classical algorithm from 1981
• Invented by Glenn Ricart (NIH) and Ashok Agrawala

(U. Maryland)

• No token.
• Uses the notion of causality and multicast.
• Has lower waiting time to enter CS than Ring-Based 

approach.



Key Idea: Ricart-Agrawala Algorithm

• enter() at process Pi

• multicast a request to all processes
• Request: <T, Pi>, where T = current Lamport timestamp at Pi

• Wait until all other processes have responded positively to request

• Requests are granted in order of causality.

• <T, Pi> is used lexicographically: Pi in request <T, Pi> is used to break 
ties (since Lamport timestamps are not unique for concurrent events).



Messages in RA Algorithm
• enter() at process Pi
• set state to Wanted
• multicast “Request” <Ti, Pi> to all other processes, where Ti = current 

Lamport timestamp at Pi
• wait until all other processes send back “Reply”
• change state to Held and enter the CS

• On receipt of a Request <Tj, j> at Pi (i ≠ j):
• if (state = Held) or (state = Wanted & (Ti, i) < (Tj, j)) 

// lexicographic ordering in (Tj, j), Ti is Lamport timestamp of Pi’s request

add request to local queue (of waiting requests)
else send “Reply” to Pj

• exit() at process Pi
• change state to Released and “Reply” to all queued requests.



Example: Ricart-Agrawala Algorithm
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Request message
<T, Pi> = <102, 32>
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Example: Ricart-Agrawala Algorithm
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Example: Ricart-Agrawala Algorithm
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Example: Ricart-Agrawala Algorithm
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Analysis: Ricart-Agrawala’s Algorithm

• Safety
• Two processes Pi and Pj cannot both have access to CS

• If they did, then both would have sent Reply to each other. 
• Thus, (Ti, i) < (Tj, j) and (Tj, j) < (Ti, i), which are together not 

possible.
• What if (Ti, i) < (Tj, j) and Pi replied to Pj’s request before it 

created its own request? 
• But then, causality and Lamport timestamps at Pi implies that Ti 

> Tj , which is a contradiction.
• So this situation cannot arise.



Analysis: Ricart-Agrawala’s Algorithm

• Safety
• Two processes Pi and Pj cannot both have access to CS.

• Liveness
• Worst-case: wait for all other (N-1) processes to send 

Reply.
• Ordering
• Requests with lower Lamport timestamps are granted 

earlier.



Analysis: Ricart-Agrawala’s Algorithm

• Safety
• Two processes Pi and Pj cannot both have access to CS.

• Liveness
• Worst-case: wait for all other (N-1) processes to send 

Reply.
• Ordering
• Requests with lower Lamport timestamps are granted 

earlier.



Analysis: Ricart-Agrawala’s Algorithm 

• Bandwidth: 
• 2*(N-1) messages per enter operation
• N-1 unicasts for the multicast request + N-1 replies
• Maybe fewer depending on the multicast mechanism.

• N-1 unicasts for the multicast release per exit operation 
• Maybe fewer depending on the multicast mechanism.

• Client delay: 
• one round-trip time

• Synchronization delay: 
• one message transmission time

• Client and synchronization delays have gone down to O(1). 

• Bandwidth usage is still high. Can we bring it down further? 



Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual 
exclusion in distributed systems. 
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm



Maekawa’s Algorithm: Key Idea

• Ricart-Agrawala requires replies from all processes in 
group.

• Instead, get replies from only some processes in group.

• But ensure that only one process is given access to CS 
(Critical Section) at a time.



Maekawa’sVoting Sets

• Each process Pi is associated with a voting set Vi (subset 
of processes).

• Each process belongs to its own voting set.

• The intersection of any two voting sets must be non-empty.



A way to construct voting sets

p1 p2

p3 p4

P1’s voting set = V1
V2

V3 V4

p1  p2
p3  p4

One way of doing this is to put N processes in a ÖN by ÖN  matrix and for 
each Pi, its voting set Vi = row containing Pi + column containing Pi. 

Size of voting set = 2*ÖN-1.



Maekawa: Key Differences From 
Ricart-Agrawala

• Each process requests permission from only its voting 
set members.
• Not from all

• Each process (in a voting set) gives permission to at 
most one process at a time.
• Not to all



Actions

• state = Released, voted = false
• enter() at process Pi:
• state = Wanted
• Multicast Request message to all processes in Vi
• Wait for Reply (vote) messages from all processes in Vi 

(including vote from self)
• state = Held

• exit() at process Pi:
• state = Released
• Multicast Release to all processes in Vi



Actions (contd.)
• When Pi receives a Request from Pj:

if (state == Held OR voted = true)
queue Request

else
send Reply to Pj and set voted = true

• When Pi receives a Release from Pj:
if (queue empty)

voted = false
else

dequeue head of queue, say Pk
Send Reply only to Pk
voted = true



Size of  Voting Sets

• Each voting set is of size K.

• Each process belongs to M other voting sets.

• Maekawa showed that K=M=approx. ÖN works best.



Optional self-study: Why ÖN ?
• Let each voting set be of size K and each process belongs to M other voting sets.

• Total number of voting set members (processes may be repeated) = K*N

• But since each process is in M voting sets

• K*N = M*N => K = M   (1)

• Consider a process Pi

• Total number of voting sets = members present in Pi’s voting set and all their voting sets 
= (M-1)*K + 1

• All processes in group must be in above
• To minimize the overhead at each process (K), need each of the above members to be 

unique, i.e.,

• N = (M-1)*K + 1

• N = (K-1)*K + 1  (due to (1))
• K ~ ÖN



Size of  Voting Sets

• Each voting set is of size K.

• Each process belongs to M other voting sets.

• Maekawa showed that K=M=approx. ÖN works best.

• Matrix technique gives a voting set size of 2*ÖN-1 = O(ÖN). 



Performance: Maekawa Algorithm

• Bandwidth
• 2K = 2ÖN messages per enter 
• K = ÖN messages per exit
• Better than Ricart and Agrawala’s (2*(N-1) and N-1 messages)
• ÖN quite small. N ~ 1 million => ÖN = 1K

• Client delay: 
• One round trip time

• Synchronization delay: 
• 2 message transmission times



Safety

• When a process Pi receives replies from all its voting 
set Vi members, no other process Pj could have 
received replies from all its voting set members Vj.
• Vi and Vj intersect in at least one process say Pk.
• But Pk sends only one Reply (vote) at a time, so it 

could not have voted for both Pi and Pj.



Liveness
• Does not guarantee liveness, since can have a deadlock.

• System of 6 processes {0,1,2,3,4,5}. 0,1,2 want to enter critical section:

• V0= {0, 1, 2}:

• 0, 2 send reply to 0, but 1 sends reply to 1;

• V1= {1, 3, 5}:

• 1, 3 send reply to 1, but 5 sends reply to 2;

• V2= {2, 4, 5}:

• 4, 5 send reply to 2, but 2 sends reply to 0;

• Now, 0 waits for 1’s reply, 1 waits for 5’s reply (5 waits for 2 to send a
release), and 2 waits for 0 to send a release. Hence, deadlock!



Analysis: Maekawa Algorithm

• Safety:
• When a process Pi receives replies from all its voting set Vi 

members, no other process Pj could have received replies 
from all its voting set members Vj.

• Liveness
• Not satisfied. Can have deadlock! 

• Ordering:
• Not satisfied. 



Next Class

• How can we extend Maekawa’s algorithm to break 
deadlock? 

• Exam review


