
Distributed Systems

CS425/ECE428

March 3 2021

Instructor : Radhika Mittal

Acknowledgements for some of the materials: Indy Gupta and Nikita Borisov

Logistics

• Complete your midterm 1 reservation on CBTF.
• More detailed instructions posted on CampusWire.

• HW2 is due tomorrow 11:59pm.
• We will release the solutions Saturday midnight / Sunday

morning.

Today’s agenda

•Mutual Exclusion
• Chapter 15.2

• Leader Election (if time)
• Chapter 15.3

Problem Statement for mutual exclusion

• Critical Section Problem:
• Piece of code (at all processes) for which we

need to ensure there is at most one process
executing it at any point of time.

• Each process can call three functions
• enter() to enter the critical section (CS)
• AccessResource() to run the critical section code
• exit() to exit the critical section

Mutual exclusion in distributed systems

• Processes communicating by passing messages.

• Cannot share variables like semaphores!

• How do we support mutual exclusion in a distributed
system?

Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

System Model

• Each pair of processes is connected by reliable
channels (such as TCP).

• Messages sent on a channel are eventually delivered
to recipient, and in FIFO (First In First Out) order.

• Processes do not fail.
• Fault-tolerant variants exist in literature.

Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

Analysis of Central Algorithm

• Safety – at most one process in CS
• Exactly one token

• Liveness – every request for CS granted eventually
• With N processes in system, queue has at most N

processes
• If each process exits CS eventually and no failures, liveness

guaranteed
• Ordering:
• FIFO ordering guaranteed in order of requests received at

leader
• Not in the order in which requests were sent or the

order in which processes enter CS!

Analyzing Performance
Three metrics:

• Bandwidth: the total number of messages sent in each enter and
exit operation.

• Client delay: the delay incurred by a process at each enter and
exit operation (when no other process is in CS, or waiting)
• We will focus on the client delay for the enter operation.

• Synchronization delay: the time interval between one process
exiting the critical section and the next process entering it (when
there is only one process waiting). Measure of the throughput of the
system.

Analysis of Central Algorithm
• Bandwidth: the total number of messages sent in each enter and exit

operation.
• 2 messages for enter
• 1 message for exit

• Client delay: the delay incurred by a process at each enter and exit
operation (when no other process is in, or waiting)
• 2 message latencies or 1 round-trip (request + grant) on enter.

• Synchronization delay: the time interval between one process
exiting the critical section and the next process entering it (when
there is only one process waiting)
• 2 message latencies (release + grant)

Limitations of Central Algorithm

• The leader is the performance bottleneck and single point of
failure.

Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

Ring-based Mutual Exclusion

Currently holds token,
can access CS

Token:

N80

N32

N5

N12

N6

N3

Ring-based Mutual Exclusion

Cannot access CS anymore

Here’s the token!

Token:

N80

N32

N5

N12

N6

N3

Ring-based Mutual Exclusion

Token:

N80

N32

N5

N12

N6

N3

Currently holds token,
can access CS

Ring-based Mutual Exclusion

• N Processes organized in a virtual ring
• Each process can send message to its successor in ring
• Exactly 1 token
• enter()
• Wait until you get token

• exit() // already have token
• Pass on token to ring successor

• If receive token, and not currently in enter(), just pass on
token to ring successor

Analysis of Ring-based algorithm

• Safety
• Exactly one token

• Liveness
• Token eventually loops around ring and reaches requesting

process (we assume no failures)
• Ordering
• Token not always obtained in order of enter events.

Analysis of Ring-based algorithm

• Safety
• Exactly one token

• Liveness
• Token eventually loops around ring and reaches requesting

process (we assume no failures)
• Ordering
• Token not always obtained in order of enter events.

Analysis of Ring-based algorithm

• Bandwidth
• Per enter, 1 message at requesting process but up to N

messages throughout system.
• 1 message sent per exit.
• Constantly consumes bandwidth even when no process requires

entry to the critical section (except when a process is executing
critical section).

Analysis of Ring-based algorithm
• Client delay:
• Best case: just received token
• Worst case: just sent token to neighbor
• 0 to N message transmissions after entering enter()

• Synchronization delay between one process’ exit() from the
CS and the next process’ enter():
• Best case: process in enter() is successor of process in

exit()
• Worst case: process in enter() is predecessor of process in

exit()
• Between 1 and (N-1) message transmissions.

• Can we improve upon this O(n) client and synchronization delays?

Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

Ricart-Agrawala’s Algorithm

• Classical algorithm from 1981
• Invented by Glenn Ricart (NIH) and Ashok Agrawala

(U. Maryland)

• No token.
• Uses the notion of causality and multicast.
• Has lower waiting time to enter CS than Ring-Based

approach.

Key Idea: Ricart-Agrawala Algorithm

• enter() at process Pi

• multicast a request to all processes
• Request: <T, Pi>, where T = current Lamport timestamp at Pi

• Wait until all other processes have responded positively to request

• Requests are granted in order of causality.

• <T, Pi> is used lexicographically: Pi in request <T, Pi> is used to break
ties (since Lamport timestamps are not unique for concurrent events).

Messages in RA Algorithm
• enter() at process Pi
• set state to Wanted
• multicast “Request” <Ti, Pi> to all other processes, where Ti = current

Lamport timestamp at Pi
• wait until all other processes send back “Reply”
• change state to Held and enter the CS

• On receipt of a Request <Tj, j> at Pi (i ≠ j):
• if (state = Held) or (state = Wanted & (Ti, i) < (Tj, j))

// lexicographic ordering in (Tj, j), Ti is Lamport timestamp of Pi’s request

add request to local queue (of waiting requests)
else send “Reply” to Pj

• exit() at process Pi
• change state to Released and “Reply” to all queued requests.

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

Request message
<T, Pi> = <102, 32>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

Reply messages

N32 state: Held.
Can now access CS

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS

N12 state:
Wanted

N80 state:
Wanted

Request message
<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS

N12 state:
Wanted

N80 state:
Wanted

Reply messages
Request message

<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted

Reply messages
Request message

<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12> (since > (110, 80))

Reply messages
Request message

<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12> (since > (110, 80))

Reply messages
Request message

<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12>

Reply

Request message
<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Released.

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12>

Reply

Request message
<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Released.
Multicast Reply to
<115, 12>, <110, 80>

N80 state:
Wanted
Queue requests: <115, 12>

Reply

Request message
<115, 12>

Request message
<110, 80>

N12 state:
Wanted

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Released.
Multicast Reply to
<115, 12>, <110, 80>

N12 state:
Wanted
(waiting for
N80’s
reply)

N80 state:
Held. Can now access CS.
Queue requests: <115, 12>

Reply messages

Request message
<115, 12>

Request message
<110, 80>

Analysis: Ricart-Agrawala’s Algorithm

• Safety
• Two processes Pi and Pj cannot both have access to CS

• If they did, then both would have sent Reply to each other.
• Thus, (Ti, i) < (Tj, j) and (Tj, j) < (Ti, i), which are together not

possible.
• What if (Ti, i) < (Tj, j) and Pi replied to Pj’s request before it

created its own request?
• But then, causality and Lamport timestamps at Pi implies that Ti

> Tj , which is a contradiction.
• So this situation cannot arise.

Analysis: Ricart-Agrawala’s Algorithm

• Safety
• Two processes Pi and Pj cannot both have access to CS.

• Liveness
• Worst-case: wait for all other (N-1) processes to send

Reply.
• Ordering
• Requests with lower Lamport timestamps are granted

earlier.

Analysis: Ricart-Agrawala’s Algorithm

• Safety
• Two processes Pi and Pj cannot both have access to CS.

• Liveness
• Worst-case: wait for all other (N-1) processes to send

Reply.
• Ordering
• Requests with lower Lamport timestamps are granted

earlier.

Analysis: Ricart-Agrawala’s Algorithm

• Bandwidth:
• 2*(N-1) messages per enter operation
• N-1 unicasts for the multicast request + N-1 replies
• Maybe fewer depending on the multicast mechanism.

• N-1 unicasts for the multicast release per exit operation
• Maybe fewer depending on the multicast mechanism.

• Client delay:
• one round-trip time

• Synchronization delay:
• one message transmission time

• Client and synchronization delays have gone down to O(1).

• Bandwidth usage is still high. Can we bring it down further?

Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

Maekawa’s Algorithm: Key Idea

• Ricart-Agrawala requires replies from all processes in
group.

• Instead, get replies from only some processes in group.

• But ensure that only one process is given access to CS
(Critical Section) at a time.

Maekawa’sVoting Sets

• Each process Pi is associated with a voting set Vi (subset
of processes).

• Each process belongs to its own voting set.

• The intersection of any two voting sets must be non-empty.

A way to construct voting sets

p1 p2

p3 p4

P1’s voting set = V1
V2

V3 V4

p1 p2
p3 p4

One way of doing this is to put N processes in a ÖN by ÖN matrix and for
each Pi, its voting set Vi = row containing Pi + column containing Pi.

Size of voting set = 2*ÖN-1.

Maekawa: Key Differences From
Ricart-Agrawala

• Each process requests permission from only its voting
set members.
• Not from all

• Each process (in a voting set) gives permission to at
most one process at a time.
• Not to all

Actions

• state = Released, voted = false
• enter() at process Pi:
• state = Wanted
• Multicast Request message to all processes in Vi
• Wait for Reply (vote) messages from all processes in Vi

(including vote from self)
• state = Held

• exit() at process Pi:
• state = Released
• Multicast Release to all processes in Vi

Actions (contd.)
• When Pi receives a Request from Pj:

if (state == Held OR voted = true)
queue Request

else
send Reply to Pj and set voted = true

• When Pi receives a Release from Pj:
if (queue empty)

voted = false
else

dequeue head of queue, say Pk
Send Reply only to Pk
voted = true

Size of Voting Sets

• Each voting set is of size K.

• Each process belongs to M other voting sets.

• Maekawa showed that K=M=approx. ÖN works best.

Optional self-study: Why ÖN ?
• Let each voting set be of size K and each process belongs to M other voting sets.

• Total number of voting set members (processes may be repeated) = K*N

• But since each process is in M voting sets

• K*N = M*N => K = M (1)

• Consider a process Pi

• Total number of voting sets = members present in Pi’s voting set and all their voting sets
= (M-1)*K + 1

• All processes in group must be in above
• To minimize the overhead at each process (K), need each of the above members to be

unique, i.e.,

• N = (M-1)*K + 1

• N = (K-1)*K + 1 (due to (1))
• K ~ ÖN

Size of Voting Sets

• Each voting set is of size K.

• Each process belongs to M other voting sets.

• Maekawa showed that K=M=approx. ÖN works best.

• Matrix technique gives a voting set size of 2*ÖN-1 = O(ÖN).

Performance: Maekawa Algorithm

• Bandwidth
• 2K = 2ÖN messages per enter
• K = ÖN messages per exit
• Better than Ricart and Agrawala’s (2*(N-1) and N-1 messages)
• ÖN quite small. N ~ 1 million => ÖN = 1K

• Client delay:
• One round trip time

• Synchronization delay:
• 2 message transmission times

Safety

• When a process Pi receives replies from all its voting
set Vi members, no other process Pj could have
received replies from all its voting set members Vj.
• Vi and Vj intersect in at least one process say Pk.
• But Pk sends only one Reply (vote) at a time, so it

could not have voted for both Pi and Pj.

Liveness
• Does not guarantee liveness, since can have a deadlock.

• System of 6 processes {0,1,2,3,4,5}. 0,1,2 want to enter critical section:

• V0= {0, 1, 2}:

• 0, 2 send reply to 0, but 1 sends reply to 1;

• V1= {1, 3, 5}:

• 1, 3 send reply to 1, but 5 sends reply to 2;

• V2= {2, 4, 5}:

• 4, 5 send reply to 2, but 2 sends reply to 0;

• Now, 0 waits for 1’s reply, 1 waits for 5’s reply (5 waits for 2 to send a
release), and 2 waits for 0 to send a release. Hence, deadlock!

Analysis: Maekawa Algorithm

• Safety:
• When a process Pi receives replies from all its voting set Vi

members, no other process Pj could have received replies
from all its voting set members Vj.

• Liveness
• Not satisfied. Can have deadlock!

• Ordering:
• Not satisfied.

Next Class

• How can we extend Maekawa’s algorithm to break
deadlock?

• Exam review

