Distributed Systems

CS425/ECE428

March 3 2021

Instructor: Radhika Mittal

Acknowledgements for some of the materials: Indy Gupta and Nikita Borisov
Logistics

• Complete your midterm 1 reservation on CBTF.
 • More detailed instructions posted on CampusWire.

• HW2 is due tomorrow 11:59pm.
 • We will release the solutions Saturday midnight / Sunday morning.
Today’s agenda

• Mutual Exclusion
 • Chapter 15.2

• Leader Election (if time)
 • Chapter 15.3
Problem Statement for mutual exclusion

• **Critical Section Problem:**
 • Piece of code (at all processes) for which we need to ensure there is at most one process executing it at any point of time.

• Each process can call three functions
 • `enter()` to enter the critical section (CS)
 • `AccessResource()` to run the critical section code
 • `exit()` to exit the critical section
Mutual exclusion in distributed systems

- Processes communicating by passing messages.
- Cannot share variables like semaphores!
- *How do we support mutual exclusion in a distributed system?*
Mutual exclusion in distributed systems

• Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 • Central server algorithm
 • Ring-based algorithm
 • Ricart-Agrawala Algorithm
 • Maekawa Algorithm
System Model

• Each pair of processes is connected by reliable channels (such as TCP).

• Messages sent on a channel are eventually delivered to recipient, and in FIFO (First In First Out) order.

• Processes do not fail.
 • Fault-tolerant variants exist in literature.
Mutual exclusion in distributed systems

- Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 - Central server algorithm
 - Ring-based algorithm
 - Ricart-Agrawala Algorithm
 - Maekawa Algorithm
Analysis of Central Algorithm

• Safety – at most one process in CS
 • Exactly one token

• Liveness – every request for CS granted eventually
 • With N processes in system, queue has at most N processes
 • If each process exits CS eventually and no failures, liveness guaranteed

• Ordering:
 • FIFO ordering guaranteed in order of requests received at leader
 • Not in the order in which requests were sent or the order in which processes enter CS!
Analyzing Performance

Three metrics:

- **Bandwidth**: the total number of messages sent in each *enter* and *exit* operation.

- **Client delay**: the delay incurred by a process at each enter and exit operation (when *no* other process is in CS, or waiting)

 - We will focus on the client delay for the enter operation.

- **Synchronization delay**: the time interval between one process exiting the critical section and the next process entering it (when there is *only one* process waiting). Measure of the *throughput* of the system.
Analysis of Central Algorithm

- **Bandwidth**: the total number of messages sent in each `enter` and `exit` operation.
 - 2 messages for `enter`
 - 1 message for `exit`

- **Client delay**: the delay incurred by a process at each `enter` and `exit` operation (when *no* other process is in, or waiting)
 - 2 message latencies or 1 round-trip (request + grant) on `enter`

- **Synchronization delay**: the time interval between one process exiting the critical section and the next process entering it (when there is *only one* process waiting)
 - 2 message latencies (release + grant)
Limitations of Central Algorithm

• The leader is the performance bottleneck and single point of failure.
Mutual exclusion in distributed systems

• Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 • Central server algorithm
 • Ring-based algorithm
 • Ricart-Agrawala Algorithm
 • Maekawa Algorithm
Ring-based Mutual Exclusion

Currently holds token, can access CS
Ring-based Mutual Exclusion

Cannot access CS anymore

Here’s the token!

Token: ●
Ring-based Mutual Exclusion

Currently holds token, can access CS
Ring-based Mutual Exclusion

- N Processes organized in a virtual ring
- Each process can send message to its successor in ring
- Exactly 1 token
- **enter()**
 - Wait until you get token
- **exit()** // already have token
 - Pass on token to ring successor
- If receive token, and not currently in enter(), just pass on token to ring successor
Analysis of Ring-based algorithm

- Safety
 - Exactly one token
- Liveness
 - Token eventually loops around ring and reaches requesting process (we assume no failures)
- Ordering
 - Token not always obtained in order of enter events.
Analysis of Ring-based algorithm

- **Safety**
 - Exactly one token

- **Liveness**
 - Token eventually loops around ring and reaches requesting process (we assume no failures)

- **Ordering**
 - Token not always obtained in order of enter events.
Analysis of Ring-based algorithm

- Bandwidth
 - Per enter, 1 message at requesting process but up to N messages throughout system.
 - 1 message sent per exit.
 - Constantly consumes bandwidth even when no process requires entry to the critical section (except when a process is executing critical section).
Analysis of Ring-based algorithm

• Client delay:
 • Best case: just received token
 • Worst case: just sent token to neighbor
 • 0 to N message transmissions after entering enter()

• Synchronization delay between one process’ exit() from the CS and the next process’ enter():
 • Best case: process in enter() is successor of process in exit()
 • Worst case: process in enter() is predecessor of process in exit()
 • Between 1 and $(N-1)$ message transmissions.

• Can we improve upon this $O(n)$ client and synchronization delays?
Mutual exclusion in distributed systems

• Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 • Central server algorithm
 • Ring-based algorithm
 • Ricart-Agrawala Algorithm
 • Maekawa Algorithm
Ricart-Agrawala’s Algorithm

- Classical algorithm from 1981
- Invented by Glenn Ricart (NIH) and Ashok Agrawala (U. Maryland)
- No token.
- Uses the notion of causality and multicast.
- Has lower waiting time to enter CS than Ring-Based approach.
Key Idea: Ricart-Agrawala Algorithm

- `enter()` at process P_i
 - multicast a request to all processes
 - Request: $<T, P_i>$, where $T =$ current Lamport timestamp at P_i
 - Wait until `all` other processes have responded positively to request
 - Requests are granted in order of causality.
- $<T, P_i>$ is used lexicographically: P_i in request $<T, P_i>$ is used to break ties (since Lamport timestamps are not unique for concurrent events).
Messages in RA Algorithm

- `enter()` at process Pi
 - set state to `Wanted`
 - multicast "Request" \(<T_i, Pi>\) to all other processes, where \(T_i = \) current Lamport timestamp at Pi
 - wait until all other processes send back "Reply"
 - change state to `Held` and enter the CS

- On receipt of a Request \(<T_j, j>\) at Pi \(i \neq j\):
 - if (state = `Held`) or (state = `Wanted` & \((T_i, i) < (T_j, j)\))
 // lexicographic ordering in \((T_j, j)\), \(T_i\) is Lamport timestamp of Pi's request
 add request to local queue (of waiting requests)
 - else send "Reply" to Pj

- `exit()` at process Pi
 - change state to `Released` and "Reply" to all queued requests.
Example: Ricart-Agrawala Algorithm

Request message
\(<T, P_i> = <102, 32>\)
Example: Ricart-Agrawala Algorithm

N32 state: Held.
Can now access CS
Example: Ricart-Agrawala Algorithm

N12 state: Wanted

N12 state:
Request message
<115, 12>

N3 state:

N6 state:

N32 state: Held.
Can now access CS

N80 state:
Wanted

N80 state:
Request message
<110, 80>

N5 state:
Example: Ricart-Agrawala Algorithm

N12 state: Wanted

N6

N12

N3

Request message: <115, 12>

Reply messages

N32

N32 state: Held.
Can now access CS

N80

N80 state: Wanted

N5

Request message: <110, 80>
Example: Ricart-Agrawala Algorithm

N12 state: **Wanted**

Request message: \(<115, 12>\)

Reply messages

N12

N3

Request message: \(<110, 80>\)

N32

N80

N6

N5

N32 state: **Held**.
Can now access CS
Queue requests:
\(<115, 12>, <110, 80>\)

N80 state: **Wanted**
Example: Ricart-Agrawala Algorithm

N12 state: Wanted

N80 state: Wanted
Queue requests: <115, 12> (since > (110, 80))

N32 state: Held.
Can now access CS
Queue requests: <115, 12>, <110, 80>

Request message <115, 12>
Reply messages
Example: Ricart-Agrawala Algorithm

N12 state: Wanted

N12

Request message
<115, 12>

N3

Reply messages

N6

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N80

Request message
<110, 80>

N5

N80 state: Wanted
Queue requests: <115, 12> (since > (110, 80))
Example: Ricart-Agrawala Algorithm

N12 state: Wanted
Request message <115, 12>
Reply

N6

N12

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N80 state:
Wanted
Queue requests: <115, 12>

N80

N5

<110, 80>
Example: Ricart-Agrawala Algorithm

N12 state: Wanted

N80 state: Wanted
Queue requests: <115, 12>

N32 state: Released.

Request message <115, 12>
Reply

Request message <110, 80>
Reply
Example: Ricart-Agrawala Algorithm

N12 state: Wanted

N6

Request message
<115, 12>

Reply

N12

N3

N32

N80

N5

N32 state: Released.
Multicast Reply to
<115, 12>, <110, 80>

N80 state:
Wanted
Queue requests: <115, 12>
Example: Ricart-Agrawala Algorithm

N12 state:
Wanted (waiting for N80’s reply)

N12

Request message

<115, 12>

Reply messages

N6

N12

Request message

<110, 80>

N3

N32 state: **Released.**
Multicast Reply to
<115, 12>, <110, 80>

N32

N80

N80 state:
Held. Can now access CS.
Queue requests: <115, 12>

N80

N5
Analysis: Ricart-Agrawala’s Algorithm

• Safety
 • Two processes P_i and P_j cannot both have access to CS
 • If they did, then both would have sent Reply to each other.
 • Thus, $(T_i, i) < (T_j, j)$ and $(T_j, j) < (T_i, i)$, which are together not possible.
 • What if $(T_i, i) < (T_j, j)$ and P_i replied to P_j’s request before it created its own request?
 • But then, causality and Lamport timestamps at P_i implies that $T_i > T_j$, which is a contradiction.
 • So this situation cannot arise.
Analysis: Ricart-Agrawala’s Algorithm

- **Safety**
 - Two processes P_i and P_j cannot both have access to CS.

- **Liveness**
 - Worst-case: wait for all other $(N-1)$ processes to send Reply.

- **Ordering**
 - Requests with lower Lamport timestamps are granted earlier.
Analysis: Ricart-Agrawala’s Algorithm

• **Safety**
 • Two processes P_i and P_j cannot both have access to CS.

• **Liveness**
 • Worst-case: wait for all other $(N-1)$ processes to send Reply.

• **Ordering**
 • Requests with lower Lamport timestamps are granted earlier.
Analysis: Ricart-Agrawala’s Algorithm

• Bandwidth:
 • $2(N-1)$ messages per enter operation
 • $N-1$ unicasts for the multicast request + $N-1$ replies
 • Maybe fewer depending on the multicast mechanism.
 • $N-1$ unicasts for the multicast release per exit operation
 • Maybe fewer depending on the multicast mechanism.

• Client delay:
 • one round-trip time

• Synchronization delay:
 • one message transmission time

• Client and synchronization delays have gone down to $O(1)$.
• Bandwidth usage is still high. Can we bring it down further?
Mutual exclusion in distributed systems

• Our focus today: Classical algorithms for mutual exclusion in distributed systems.
 • Central server algorithm
 • Ring-based algorithm
 • Ricart-Agrawala Algorithm
 • Maekawa Algorithm
Maekawa’s Algorithm: Key Idea

- Ricart-Agrawala requires replies from all processes in group.

- Instead, get replies from only some processes in group.

- But ensure that only one process is given access to CS (Critical Section) at a time.
Maekawa’s Voting Sets

• Each process P_i is associated with a voting set V_i (subset of processes).
• Each process belongs to its own voting set.
• The intersection of any two voting sets must be non-empty.
A way to construct voting sets

One way of doing this is to put N processes in a $\sqrt{N} \times \sqrt{N}$ matrix and for each P_i, its voting set $V_i = \text{row containing } P_i + \text{column containing } P_i$.

Size of voting set $= 2^{\sqrt{N}-1}$.
Maekawa: Key Differences From Ricart-Agrawala

• Each process requests permission from only its voting set members.
 • Not from all

• Each process (in a voting set) gives permission to at most one process at a time.
 • Not to all
Actions

• state = Released, voted = false

• enter() at process Pi:
 • state = Wanted
 • Multicast Request message to all processes in Vi
 • Wait for Reply (vote) messages from all processes in Vi (including vote from self)
 • state = Held

• exit() at process Pi:
 • state = Released
 • Multicast Release to all processes in Vi
Actions (contd.)

• When P_i receives a Request from P_j:

 if (state == Held OR voted = true)
 queue Request
 else
 send Reply to P_j and set voted = true

• When P_i receives a Release from P_j:

 if (queue empty)
 voted = false
 else
 dequeue head of queue, say P_k
 Send Reply only to P_k
 voted = true
Size of Voting Sets

• Each voting set is of size K.
• Each process belongs to M other voting sets.
• Maekawa showed that $K = M = \text{approx. } \sqrt{N}$ works best.
Optional self-study: Why \sqrt{N}?

- Let each voting set be of size K and each process belongs to M other voting sets.
- Total number of voting set members (processes may be repeated) = $K*N$
- But since each process is in M voting sets
 - $K*N = M*N \Rightarrow K = M$ (1)
- Consider a process P_i
 - Total number of voting sets = members present in P_i's voting set and all their voting sets
 - $(M-1)*K + 1$
 - All processes in group must be in above
 - To minimize the overhead at each process (K), need each of the above members to be unique, i.e.,
 - $N = (M-1)*K + 1$
 - $N = (K-1)*K + 1$ (due to (1))
 - $K \sim \sqrt{N}$
Size of Voting Sets

• Each voting set is of size K.
• Each process belongs to M other voting sets.
• Maekawa showed that $K=M=\text{approx. } \sqrt{N}$ works best.
• Matrix technique gives a voting set size of $2\sqrt{N}-1 = O(\sqrt{N})$.
Performance: Maekawa Algorithm

- Bandwidth
 - $2K = 2\sqrt{N}$ messages per enter
 - $K = \sqrt{N}$ messages per exit
 - Better than Ricart and Agrawala’s $(2^*(N-1)$ and $N-1$ messages)
 - \sqrt{N} quite small. $N \sim 1$ million $\Rightarrow \sqrt{N} = 1K$

- Client delay:
 - One round trip time

- Synchronization delay:
 - 2 message transmission times
Safety

• When a process P_i receives replies from all its voting set V_i members, no other process P_j could have received replies from all its voting set members V_j.
 • V_i and V_j intersect in at least one process say P_k.
 • But P_k sends only one Reply (vote) at a time, so it could not have voted for both P_i and P_j.
Liveness

- Does not guarantee liveness, since can have a *deadlock*.
- *System of 6 processes* \{0, 1, 2, 3, 4, 5\}. 0, 1, 2 want to enter critical section:
 - \(V_0 = \{0, 1, 2\}\):
 - 0, 2 send *reply* to 0, but 1 sends *reply* to 1;
 - \(V_1 = \{1, 3, 5\}\):
 - 1, 3 send *reply* to 1, but 5 sends *reply* to 2;
 - \(V_2 = \{2, 4, 5\}\):
 - 4, 5 send *reply* to 2, but 2 sends *reply* to 0;
- Now, 0 waits for 1’s reply, 1 waits for 5’s reply (5 waits for 2 to send a release), and 2 waits for 0 to send a release. Hence, deadlock!
Analysis: Maekawa Algorithm

• Safety:
 • When a process \(P_i \) receives replies from all its voting set \(V_i \) members, no other process \(P_j \) could have received replies from all its voting set members \(V_j \).

• Liveness
 • Not satisfied. Can have deadlock!

• Ordering:
 • Not satisfied.
Next Class

• How can we extend Maekawa’s algorithm to break deadlock?

• Exam review