
Distributed Systems

CS425/ECE428

Radhika Mittal

Today’s agenda

• Course overview

• Logistics

•Distributed System Model (if time)
• Chapter 2.4 (except 2.4.3), parts of Chapter 2.3

Today’s agenda

• Course overview

• Logistics

•Distributed System Model (if time)
• Chapter 2.4 (except 2.4.3), parts of Chapter 2.3

Examples of distributed systems

• World Wide Web

• A cluster of nodes on the cloud (AWS, Azure, GCP)

• Multi-player games

• BitTorrent

• Online banking

• ……..

What is a distributed system?

Hardware or software components located at
networked computers communicate or
coordinate their actions only by passing
messages.

- Your textbook
(Coulouris, Dollimore, Kindberg, Blair)

What is a distributed system?

A collection of autonomous computing
elements, connected by a network, which appear
to its users as a single coherent system.

- Steen and Tanenbaum

What is a distributed system?

A system in which components located on
networked computers communicate and
coordinate their actions by passing messages.
The components interact with each other in order to
achieve a common goal.

- Wikipedia

What is a distributed system?

Independent components or elements
(software processes or any piece of hardware used to run a

process, store data, etc)

What is a distributed system?

Independent components or elements that are connected by
a network.

What is a distributed system?

Independent components or elements that are connected by
a network and communicate by passing messages.

What is a distributed system?

Independent components or elements that are connected by
a network and communicate by passing messages to achieve a

common goal, appearing as a single coherent system.

What is a distributed system?

A distributed system is one in which the failure of a
computer you didn't even know existed can render
your own computer unusable.

- Leslie Lamport

Why distributed systems?
• Nature of the application
• Multiplayer games, P2P file sharing, client requesting a service.

• Availability despite unreliable components
• A service shouldn’t fail when one computer does.

• Conquer geographic separation
• A web request in India is faster served by a server in India than

by a server in US.
• Scale up capacity
• More CPU cycles, more memory, more storage, etc.

• Customize computers for specific tasks
• E.g. for storage, email, backup.

Example: scaling up Facebook

• 2004: Facebook started on a single server
• Web server front end to assemble each user’s page.
• Database to store posts, friend lists, etc.

• 2008: 100M users
• 2010: 500M users
• 2012: 1B users
• 2019: 2.5B users

How do we scale up?

Example: scaling up Facebook

• One server running both webserver and DB

• Two servers: one for webserver, and one for DB
– System is offline 2x as often!

• Server pair for each social community
– E.g., school or college
– What if server fails?
– What if friends cross servers?

Example: scaling up Facebook

• Scalable number of front-end web servers.
• Stateless: if crash can reconnect user to another server.
• Use various policies to map users to front-ends.

• Scalable number of back-end database servers.
• Run carefully designed distributed systems code.
• If crash, system remains available.

Challenging properties

Multiple computers
• Concurrent execution.
• Independent failure.
• Autonomous

administration.
• Heterogeneous.
• Large numbers.

Networked communication
• Asynchronous
• Unreliable
• Insecure

Challenging properties

Common goal
• Consistency
• Transparency

Challenging properties

Common goal
• Consistency
• Transparency

Challenging properties
Multiple computers
• Concurrent execution.
• Independent failure.
• Autonomous

administration.
• Heterogeneous.
• Large numbers.

Networked communication
• Asynchronous
• Unreliable
• Insecure

Common goal
• Consistency
• Transparency

Challenging properties
Multiple computers
• Concurrent execution.
• Independent failure.
• Autonomous

administration.
• Heterogeneous.
• Large numbers.

Networked communication
• Asynchronous
• Unreliable
• Insecure

Rest of the course
• Distributed system concepts and algorithms
• How can failures be detected?
• How do we reason about timing and event ordering?
• How do concurrent processes share a common resource?
• How do they elect a “leader” process to do a special task?
• How do they agree on a value? Can we always get them to agree?
• How to handle distributed concurrent transactions?
• ….

• Real-world case studies
• Distributed key-value stores
• Distributed file servers
• Blockchains
• …

Today’s agenda

• Course overview

• Logistics

•Distributed System Model (if time)
• Chapter 2.4 (except 2.4.3), parts of Chapter 2.3

Course Staff

Yitan Ze

Dayue BaiFederico
Cifuentes-Urtubey

Radhika Mittal

SanchitVohra

Sources of information

• Course website
• https://courses.grainger.illinois.edu/ece428/sp2021/

• https://courses.grainger.illinois.edu/cs425/sp2021/ also works.
• Course Calendar

• Time slots and Zoom links for office hours
• Homeworks, MPs
• Lecture schedule, readings, and slides

• CampusWire
• Announcements, questions, clarifications
• Link with access code has been emailed to you.
• Please reach out if you do not have access.

Books
• Distributed Systems: Concepts and Design, Coulouris et al., 5th

edition.
• Earlier editions may be acceptable.
• Your responsibility to find correct reading sections.

• Other texts
• Distributed Systems: An Algorithmic Approach, Ghosh
• Distributed Systems: Principles and Paradigms, Tanenbaum & Steen
• Distributed Algorithms, Lynch

Relevant Online Platforms

• CampusWire
• Link with access code has been emailed to all registered students.
• Reach out to Federico (netID: fc8) if you need access.

• Gradescope
• Enrolled students have been added.
• Reach out to Federico if you are currently enrolled and have not

yet been added to Gradescope.

• CBTF for exam proctoring
• More instructions to follow.

For students in different timezones

• Lecture videos will be uploaded to Echo360.
• Please make sure you view them timely and regularly.
• Ask clarifying questions on CampusWire or during office hours.

Grade components
• Homeworks
• 6 homeworks in total.
• Approx every 2 weeks.
• Will be submitted using Gradescope.
• Must be typed (hand-written diagrams are fine).
• Must be done individually.

Grade components
• Homeworks

• MPs (only for 4 credit version)
• 4 mini projects.
• First (warm-up) MP0 will be released on Friday!
• Groups of up to 2
• Need to fill up a form to activate VM clusters.

• MP0, MP1, and MP3 can be in any language
• Supported languages: Python, Go, C/C++, Java

• MP2 must be implemented in Go.

Grade components
• Homeworks

• MPs (only for 4 credit version)

• Exams
• Two midterms

• Tentative dates and times:
• March 8, Mon, 7-8:50pm
• April 5, Mon, 7-8:50pm

• Comprehensive final.
• Exams will be scheduled and proctored via CBTF.

Grade components
• Homeworks

• MPs (only for 4 credit version)

• Exams

• CampusWire participation

Grade distribution

3-credit 4-credit

Homework 33%
16%

(drop 2 worst HWs)

Midterms 33% 25%

Final 33% 25%

MPs N/A 33%

Participation 1% 1%

Switching between credits

• Multiple sections:
• ECE428/CS425 T3
• ECE428/CS425 TU4
• ECE428/CS425 T4

• If you’d like to switch between 3 and 4 credits, try to get
on the wait list for the desired section.

• If you are unable to make the switch, reach out to
Heather Mihaly (hmihal2) after the drop deadline.

Integrity
• Academic integrity violations have serious consequences.
• Min: 0% on assignment
• Max: expulsion
• All cases are reported to CS, your college, and senate committee.

• As students, it is your responsibility to uphold
academic integrity.
• Example of violations:
• Sharing of code outside group.
• Copying homework solutions (from colleagues, from previous

years’, from the web).
• Collaborating in exams.
• ……

Questions?

Today’s agenda

• Course overview

• Logistics

•Distributed System Model
• Chapter 2.4 (except 2.4.3), parts of Chapter 2.3

What is a distributed system?

Independent components that are connected by a network
and communicate by passing messages to achieve a common

goal, appearing as a single coherent system.

process
thread,
node,
....

Relationship between processes

• Two main categories:

• Client-server

• Peer-to-peer

Relationship between processes

•Client-server

Client Server

Request

Response

Clear difference in roles.

Relationship between processes

•Client-server

Client P

1. Request

4. Response

Server

2. Request

3. Response

Relationship between processes

•Peer-to-peer

Peer

Peer Peer

Similar roles.
Run the same program/algorithm.

Relationship between processes

Client
Server

Client

Server

Server

...…

peer-to-peer

Relationship between processes

• Two broad categories:

• Client-server

• Peer-to-peer

Distributed algorithm

• Algorithm on a single process
• Sequence of steps taken to perform a computation.
• Steps are strictly sequential.

• Distributed algorithm
• Steps taken by each of the processes in the system (including

transmission of messages).
• Different processes may execute their steps concurrently.

Key aspects of a distributed system

• Processes must communicate with one another to
coordinate actions. Communication time is variable.

• Different processes (on different computers) have different
clocks!

• Processes and communication channels may fail.

Lecture Summary

• Distributed System
• Multiple computers (or processes)
• Networked communication
• Common goal

• Distributed systems are fundamentally needed.

• They are challenging to build.
• Variable communication time, clock drifts, failures.

• Course goals: concepts, designs, case studies

Acknowledgements

• Arvind Krishnamurthy
• Nikita Borisov

Questions?

