
Homework 6

CS425/ECE428

Due 11:59 p.m. May 6, 2020

1. Timestamped Concurrency . 10 points
Given two transactions, we can define a run (or an interleaving as an ordered sequence of the operations
of the two transactions where each transaction’s operations follows the order defined by the transaction.
E.g., if T1 = (op1, op2, op3) and T2 = (op4, op5, op6), then (op1, op2, op

4, op3, op
5, op6) is such a run.

In a run, we say that a context switch occurs at step s + 1 if the operations in steps s and s + 1 are
from different transactions. In the run above, there is a context switch at steps 3, 4, and 5. Any run of
total length n will have between 1 and n− 1 context switches. The number of context switches can be
interpreted to be a measure of concurrency of a run.

In this question, you will consider two transactions:

TA: read A; read B; read C; write D; write F

TB : read A; read D; read G; write B; write E; write H

(a) (1 point) Identify all the conflicts between these two transactions

(b) (3 points) Show a run / interleaving, using two-phase locking with shared (reader/writer) locks,
which maximizes the number of context switches. Show when locks are acquired, promoted, and
released in your run.

(c) (6 points) Show a run / interleaving, using timestamped concurrency, that maximizes the number
of context switches and allows both transactions to commit. In your answer specify the timestamps
of TA and TB , list how the read and write timestamps of each object are updated, and when writes
are skipped according to the Thomas rule. Also note when one of the transaction gets added to the
dependency list of the other.

2. Deadlocks . 10 points
Consider the following two transactions:

TC : read C, read S, read E, write C, write E

TD: read E, read C, write E, write C, write S

(a) (2 points) Write down a partial interleaving that would result in a deadlock when using shared
(reader/writer) two-phase locking. List which locks will be held (and in which mode—read or
write) and which will be waited for by each transaction in your deadlock.

(b) (3 points) Rosenkrantz et al. 1proposed two strategies for avoiding deadlocks. In both cases, trans-
actions maintain timestamps. When a transaction requests a lock that is currently held by another
transaction, their timestamps are compared.

In the first strategy, called wait-die, if the timestamp of the requesting transaction is newer than
the timestamp of the transaction that holds the resource (i.e., T (TR) > T (TH)), then the request-
ing transaction aborts. In this way, a newer transaction never waits for a lock held by an older
transaction.

1Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis. 1978. System level concurrency control for distributed
database systems. ACM Trans. Database Syst. 3, 2 (June 1978), 178–198. DOI: https://doi.org/10.1145/320251.320260

1

In the second strategy, called wound-wait, if the timestamp of the requesting transaction is older
than the timestamp of the transaction that holds the resource (i.e., T (TR) < T (TH)), the transaction
that holds the resource is aborted.

List one interleaving of TC and TD that would result in an aborted transaction using wait-die but
not wound-wait. State what the timestamps of the two transactions are in your example and when
the abort happens.

(c) (3 points) List one interleaving of TC and TD that would result in an aborted transaction using
wound-wait but not wait-die. State what the timestamps of the two transactions are in your example
and when the abort happens.

(d) (2 points) List an interleaving that would result in an aborted transaction in both strategies. State
what the timestamps of the two transactions are in your example (same timestamps must work for
both strategies) and when the aborts happens.

3. MapReduce . 10 points

(a) (3 points) Use a map-reduce chain to trace people who came in contact with each-other during an
epidemic outbreak in a university town. The input to the map-reduce chain is in the following key-
value format: (k, v), with k = personID, and v is a list of tuple ((x, y), entry timestamp, exit timestamp),
where (x, y) is the GPS coordinate of a location, entry timestamp is when the person appeared at
that location, and exit timestamp is when the person left the location. If a person visited the
same location more than once, the value list for that person would contain multiple entries for that
location but with different timestamps. Output of the map-reduce chain must have the following
format: (k, v), with k = personID, and v is a list of ids of people k “came in contact with”. Assume
that person A “comes in contact with” another person B if both A and B are in the same location
at the same time for more than 5 consecutive minutes.

(b) (4 points) Use a map-reduce chain to compute the dot product of two vectors V1 and V2, each
having a dimension of N . The input to the map-reduce chain is in the following key-value format:
(k, v), with k = (i, n), where i ∈ [1, N] is the index of the vector Vn, and v is the corresponding
value (Vn[i]). Your map-reduce chain must support proper partitioning and load-balancing across
workers. In particular, assuming a vector dimension of 10000, and a hundred workers, ensure that
a single worker is not required to handle more than ≈200 values at any stage.

(c) (3 points) Given a directed graph G = (V,E), use a map-reduce chain to compute the set of vertices
that are reachable in exactly 3 hops from each vertex. The input to the map-reduce chain is in the
following key-value format: (k, v) where k is a graph vertex and v is a list of its out-neighbors; i.e.,
for each x ∈ v, (k, x) is a directed edge in E. The output must be key-value pairs (k, v), where k is a
graph vertex and v is a list of vertices that are reachable in exactly three hops from k (the list must
be empty if there are no vertices reachable in exactly three hops from k). For your assistance, the
first map function for an exemplar map-reduce chain has been provided below. You may choose to
use the same function, or design your own.

function map1((k, v)):
for node in v do

emit ((node , (“i n” , k)))
emit ((k , (“out” , node)))

end for
if v is empty then

emit ((k, (“out”,)))
end if

end function

4. 2PC and Paxos . 10 points
In a Spanner and similar systems, a combination of two-phase commit and Paxos protocols are used.
Both the coordinator and participants in 2PC are implemented as replica groups, using Paxos to achieve
consensus in the group. Each replica group has a leader, so during 2PC, the leader of the coordinator

Page 2

group communicates with the leaders of the participant groups. Additionally, there are three points
that consensus needs to be achieved: at each participant to prepare for a commit, at the coordinator to
commit to a decision, and at each participant again to log the final commit.

(a) (4 points) Suppose that there is one coordinator and two participants. Each of these has a Paxos
replica group of size 3. The latency within each group is T1 and the latency between groups is T2.
Calculate the number of messages and the overall latency of the combined 2PC / Paxos protocol.
Assume that there are no failures or lost messages in this and subsequent parts of this question.

(b) (2 points) At what point can the coordinator tell the client the transaction successfully committed?
Calculate the latency until this point.

(c) (4 points) In Paxos, the proposer can be distinct from the acceptors. We can therefore modify the
protocol to have the leader of the coordinator group act as the proposer for the participant Paxos
groups as well. Calculate the latency of this modified protocol. When would it be superior?

Page 3

