
Distributed Systems

CS425/ECE428

02/19/2020

Today’s agenda

•Wrap-up Multicast
• Tree-based multicast and gossip

•Mutual Exclusion
• Chapter 15.2

• Acknowledgement:
• Materials largely derived from Prof. Indy Gupta.

Recap: Multicast

• Multicast is an important communication mode in
distributed systems.

• Applications may have different requirements:
• Basic
• Reliable
• Ordered: FIFO, Causal, Total
• Combinations of the above.

• Underlying mechanisms to spread the information:
• Unicast to all receivers, tree-based multicast, gossip.

B-Multicast

Sender

B-Multicast using unicast sends

TCP/UDP packets

Sender

B-Multicast using unicast sends

Closer look at physical network paths.
Sender

B-Multicast using unicast sends

Redundant packets!
Sender

B-Multicast using unicast sends
Similar redundancy when individual nodes
also act as routers (e.g. wireless sensor
networks).

How do we reduce the overhead?

Sender

Tree-based multicast

TCP/UDP packets

Instead of sending a unicast to all nodes,
construct a minimum spanning tree and
unicast along that.

Sender

Tree-based multicast

TCP/UDP packets

A process does not directly send messages to all
other processes in the group.

It sends a message to only a subset of processes.
Sender

Tree-based multicast
A process does not directly send messages to all
other processes in the group.

It sends a message to only a subset of processes.

Closer look at the physical network.

Sender

Tree-based multicast

Also possible to construct a tree that
includes network routers. IP multicast!

Sender

Tree-based multicast

Achieving reliability is a bit more tricky.
Overhead of tree construction and repair.

Sender

TCP/UDP packets

Third approach: Gossip

Transmit to b random targets.

Third approach: Gossip

Other nodes do the same when they
receive a message.

Transmit to b random targets.

Third approach: Gossip

Other nodes do the same when they
receive a message.

Transmit to b random targets.

Third approach: Gossip
No “tree-construction” overhead.
More efficient than unicasting to all receivers.
Also known as “epidemic multicast”.

Third approach: Gossip
Used in many real-world systems:
• Facebook’s distributed datastore uses it to

determine group membership and failures.
• Bitcoin uses it to exchange transaction

information between nodes (more later).

Multicast Summary
• Multicast is an important communication mode in distributed systems.

• Applications may have different requirements:
• Basic
• Reliable
• Ordered: FIFO, Causal, Total
• Combinations of the above.

• Underlying mechanisms to spread the information:
• Unicast to all receivers.
• Tree-based multicast, and gossip: sender unicasts messages to only

a subset of other processes, and they spread the message further.
• Gossip is more scalable and more robust to process failures.

Today’s agenda

•Wrap-up Multicast
• Tree-based multicast and gossip

•Mutual Exclusion
• Chapter 15.2

• Acknowledgement:
• Materials largely derived from Prof. Indy Gupta.

Why Mutual Exclusion?
• Bank’s Servers in the Cloud: Two of your customers make

simultaneous deposits of $10,000 into your bank account, each
from a separate ATM.
• Both ATMs read initial amount of $1000 concurrently from

the bank’s cloud server
• Both ATMs add $10,000 to this amount (locally at the ATM)
• Both write the final amount to the server
• What’s wrong?

Why mutual exclusion?
• Bank’s Servers in the Cloud: Two of your customers make

simultaneous deposits of $10,000 into your bank account, each
from a separate ATM.
• Both ATMs read initial amount of $1000 concurrently from

the bank’s cloud server
• Both ATMs add $10,000 to this amount (locally at the ATM)
• Both write the final amount to the server
• You lost $10,000!

• The ATMs need mutually exclusive access to your account entry
at the server
• or, mutually exclusive access to executing the code that

modifies the account entry.

More uses of mutual exclusion

• Distributed file systems
• Locking of files and directories

• Accessing objects in a safe and consistent way
• Ensure at most one server has access to object at any point

of time
• In industry
• Chubby is Google’s locking service

Problem Statement for mutual exclusion

• Critical Section Problem:
• Piece of code (at all processes) for which we

need to ensure there is at most one process
executing it at any point of time.

• Each process can call three functions
• enter() to enter the critical section (CS)
• AccessResource() to run the critical section code
• exit() to exit the critical section

ATM1:

enter();
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

exit(); // exit

ATM2:

enter();
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

exit(); // exit

Our bank example

Mutual exclusion for a single OS

• If all processes are running in one OS on a machine
(or VM):
• Semaphores
•Mutexes
• Condition variables
•Monitors
•…

Processes Sharing an OS: Semaphores

• Semaphore == an integer that can only be accessed via two special
functions

• Semaphore S=1; // Max number of allowed accessors.

wait(S) (or P(S) or down(S)):
while(1) { // each execution of the while loop is atomic
if (S > 0) {

S--;
break;

}
}

signal(S) (or V(S) or up(s)):
S++; // atomic

enter()

exit()

Atomic operations are
supported via hardware
instructions such as
compare-and-swap,
test-and-set, etc.

ATM1:

enter();
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

exit(); // exit

ATM2:

enter();
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

exit(); // exit

Our bank example

ATM1:

wait(S);
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

signal(S); // exit

ATM2:

wait(S);
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

signal(S); // exit

Our bank example
Semaphore S=1; // shared

Mutual exclusion in distributed systems

• Processes communicating by passing messages.

• Cannot share variables like semaphores!

• How do we support mutual exclusion in a distributed
system?

Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

Mutual Exclusion Requirements

•Need to guarantee 3 properties:
• Safety (essential):
• At most one process executes in CS (Critical

Section) at any time.
• Liveness (essential):
• Every request for a CS is granted eventually.

•Ordering (desirable):
• Requests are granted in the order they were

made.

System Model

• Each pair of processes is connected by reliable
channels (such as TCP).

• Messages are eventually delivered to recipient, and in
FIFO (First In First Out) order.

• Processes do not fail.
• Fault-tolerant variants exist in literature.

Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

Central Server Algorithm

• Elect a central master (or leader)
• Master keeps
• A queue of waiting requests from processes who wish to

access the CS
• A special token which allows its holder to access CS

• Actions of any process in group:
• enter()

• Send a request to master
• Wait for token from master

• exit()
• Send back token to master

Central Server Algorithm

•Master Actions:
• On receiving a request from process Pi

if (master has token)
Send token to Pi

else

Add Pi to queue

• On receiving a token from process Pi
if (queue is not empty)

Dequeue head of queue (say Pj), send that process the token
else

Retain token

Analysis of Central Algorithm

• Safety – at most one process in CS
• Exactly one token

• Liveness – every request for CS granted eventually
• With N processes in system, queue has at most N

processes
• If each process exits CS eventually and no failures, liveness

guaranteed
• Ordering:
• FIFO ordering guaranteed in order of requests received at

master
• Not in the order in which requests were sent or the

order in which processes enter CS!

Analysis of Central Algorithm

• Safety – at most one process in CS
• Exactly one token

• Liveness – every request for CS granted eventually
• With N processes in system, queue has at most N

processes
• If each process exits CS eventually and no failures, liveness

guaranteed
• Ordering:
• FIFO ordering guaranteed in order of requests received at

master
• Not in the order in which requests were sent or the

order in which processes enter CS!

Analyzing Performance
Three metrics:

• Bandwidth: the total number of messages sent in each enter and
exit operation.

• Client delay: the delay incurred by a process at each enter and
exit operation (when no other process is in, or waiting)
• We will focus on the client delay for the enter operation.

• Synchronization delay: the time interval between one process
exiting the critical section and the next process entering it (when
there is only one process waiting). Measure of the throughput of the
system.

Analysis of Central Algorithm
• Bandwidth: the total number of messages sent in each enter and exit

operation.
• 2 messages for enter
• 1 message for exit

• Client delay: the delay incurred by a process at each enter and exit
operation (when no other process is in, or waiting)
• 2 message latencies or 1 round-trip (request + grant) on enter.

• Synchronization delay: the time interval between one process
exiting the critical section and the next process entering it (when
there is only one process waiting)
• 2 message latencies (release + grant)

Limitations of Central Algorithm

• The master is the performance bottleneck and single point of
failure.

Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

Ring-based Mutual Exclusion

Currently holds token,
can access CS

Token:

N80

N32

N5

N12

N6

N3

Ring-based Mutual Exclusion

Cannot access CS anymore

Here’s the token!

Token:

N80

N32

N5

N12

N6

N3

Ring-based Mutual Exclusion

Token:

N80

N32

N5

N12

N6

N3

Currently holds token,
can access CS

Ring-based Mutual Exclusion

• N Processes organized in a virtual ring
• Each process can send message to its successor in ring
• Exactly 1 token
• enter()
• Wait until you get token

• exit() // already have token
• Pass on token to ring successor

• If receive token, and not currently in enter(), just pass on
token to ring successor

Analysis of Ring-based algorithm

• Safety
• Exactly one token

• Liveness
• Token eventually loops around ring and reaches requesting

process (no failures)
• Ordering
• Token not always obtained in order of enter events.

Analysis of Ring-based algorithm

• Safety
• Exactly one token

• Liveness
• Token eventually loops around ring and reaches requesting

process (no failures)
• Ordering
• Token not always obtained in order of enter events.

Analysis of Ring-based algorithm

• Bandwidth
• Per enter, 1 message at requesting process but up to N

messages throughout system.
• 1 message sent per exit.
• Constantly consumes bandwidth even when no process requires

entry to the critical section (except when a process is executing
critical section).

Analysis of Ring-based algorithm
• Client delay:
• Best case: just received token
• Worst case: just sent token to neighbor
• 0 to N message transmissions after entering enter()

• Synchronization delay between one process’ exit() from the
CS and the next process’ enter():
• Best case: process in enter() is successor of process in

exit()
• Worst case: process in enter() is predecessor of process in

exit()
• Between 1 and (N-1) message transmissions.

• Can we improve upon this O(n) client and synchronization delays?

Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

Ricart-Agrawala’s Algorithm

• Classical algorithm from 1981
• Invented by Glenn Ricart (NIH) and Ashok Agrawala

(U. Maryland)

• No token
• Uses the notion of causality and multicast.
• Has lower waiting time to enter CS than Ring-Based

approach.

Key Idea: Ricart-Agrawala Algorithm

• enter() at process Pi

• multicast a request to all processes
• Request: <T, Pi>, where T = current Lamport timestamp at Pi

• Wait until all other processes have responded positively to request

• Requests are granted in order of causality.

• <T, Pi> is used lexicographically: Pi in request <T, Pi> is used to break
ties (since Lamport timestamps are not unique for concurrent events).

Messages in RA Algorithm
• enter() at process Pi
• set state to Wanted
• multicast “Request” <Ti, Pi> to all processes, where Ti = current Lamport

timestamp at Pi
• wait until all processes send back “Reply”
• change state to Held and enter the CS

• On receipt of a Request <Tj, j> at Pi (i ≠ j):
• if (state = Held) or (state = Wanted & (Ti, i) < (Tj, j))

// lexicographic ordering in (Tj, j), Ti is Lamport timestamp of Pi’s request

add request to local queue (of waiting requests)
else send “Reply” to Pj

• exit() at process Pi
• change state to Released and “Reply” to all queued requests.

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

Request message
<T, Pi> = <102, 32>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

Reply messages

N32 state: Held.
Can now access CS

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS

N12 state:
Wanted

N80 state:
Wanted

Request message
<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS

N12 state:
Wanted

N80 state:
Wanted

Reply messages
Request message

<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted

Reply messages
Request message

<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12> (since > (110, 80))

Reply messages
Request message

<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12> (since > (110, 80))

Reply messages
Request message

<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Held.
Can now access CS
Queue requests:
<115, 12>, <110, 80>

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12>

Reply

Request message
<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Released.

N12 state:
Wanted

N80 state:
Wanted
Queue requests: <115, 12>

Reply

Request message
<115, 12>

Request message
<110, 80>

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Released.
Multicast Reply to
<115, 12>, <110, 80>

N80 state:
Wanted
Queue requests: <115, 12>

Reply

Request message
<115, 12>

Request message
<110, 80>

N12 state:
Wanted

Example: Ricart-Agrawala Algorithm

N80

N32

N5

N12

N6

N3

N32 state: Released.
Multicast Reply to
<115, 12>, <110, 80>

N12 state:
Wanted
(waiting for
N80’s
reply)

N80 state:
Held. Can now access CS.
Queue requests: <115, 12>

Reply messages

Request message
<115, 12>

Request message
<110, 80>

Next Class

• Analysis of Ricart-Agrawala algorithm.

• Maekawa algorithm for mutual exclusion.

