
Distributed Systems

CS425/ECE428

02/14/2020

Today’s agenda

• Multicast (contd.)
• Chapter 15.4
• Implementing ordered multicast.

• Acknowledgement:
• Materials derived from Prof. Indy Gupta, Prof. Nitin Vaidya, and

Prof. Nikita Borisov.

Logistics

• Midterm on March 2nd 7-9pm.
• Please let us know of any conflicts by Monday.

• HW2 will be released tonight.
• Due on Feb 27th.

• Still have people who do not have CampusWire access!
• Please email the instructors and make sure you have access.

Recap: Multicast

• Useful communication mode in distributed systems:
• Writing an object across replica servers.
• Group messaging.
• …..

• Basic multicast (B-multicast): unicast send to each process in the group.
• Does not guarantee consistent message delivery if sender fails.

• Reliable multicast (R-mulicast):
• Defined by three properties: integrity, validity, agreement.
• If some correct process multicasts a message m, then all other correct processes

deliver the m (exactly once).
• When a process receives a message ‘m’ for the first time, it re-multicasts it again

to other processes in the group.

Recap: Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’),

then every correct process that delivers m’ will have already
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that

delivers m’ will have already delivered m.
• Note that à counts messages delivered to the application, rather

than all network messages.
• Total ordering

• If a correct process delivers message m before m’ (independent of
the senders), then any other correct process that delivers m’ will
have already delivered m.

Multicast Ordering Example

Online bulletin board

Item From Subject

23 A.Hanlon Mach
24 G.Joseph Microkernels
25 A.Hanlon Re: Microkernels
26 T.L’Heureux RPC performance
27 M.Walker Re: Mach
end

Multicast Ordering Example

Online bulletin board

Item From Subject

23 A.Hanlon Mach
24 G.Joseph Microkernels
25 A.Hanlon Re: Microkernels
26 T.L’Heureux RPC performance
27 M.Walker Re: Mach
end

If we swap items 23 and 24, does that satisfy FIFO order?
Yes

Multicast Ordering Example

Online bulletin board

Item From Subject

23 A.Hanlon Mach
24 G.Joseph Microkernels
25 A.Hanlon Re: Microkernels
26 T.L’Heureux RPC performance
27 M.Walker Re: Mach
end

If we swap items 24 and 25, does that satisfy FIFO order?
Yes

Multicast Ordering Example

Online bulletin board

Item From Subject

23 A.Hanlon Mach
24 G.Joseph Microkernels
25 A.Hanlon Re: Microkernels
26 T.L’Heureux RPC performance
27 M.Walker Re: Mach
end

If we swap items 24 and 25, does that satisfy causal order?
No

Multicast Ordering Example

Online bulletin board

Item From Subject

23 A.Hanlon Mach
24 G.Joseph Microkernels
25 A.Hanlon Re: Microkernels
26 T.L’Heureux RPC performance
27 M.Walker Re: Mach
end

If we swap items 23 and 24 for one process displaying the
bulletin and not for another, does that satisfy FIFO order?

Yes

Multicast Ordering Example

Online bulletin board

Item From Subject

23 A.Hanlon Mach
24 G.Joseph Microkernels
25 A.Hanlon Re: Microkernels
26 T.L’Heureux RPC performance
27 M.Walker Re: Mach
end

If we swap items 23 and 24 for one process displaying the
bulletin and not for another, does that satisfy total order?

No

Multicast Ordering Example

Online bulletin board

Item From Subject

23 A.Hanlon Mach
24 G.Joseph Microkernels
25 A.Hanlon Re: Microkernels
26 T.L’Heureux RPC performance
27 M.Walker Re: Mach
end

If we swap items 24 and 25 for all processes displaying the
bulletin does that satisfy causal order?

No

Multicast Ordering Example

Online bulletin board

Item From Subject

23 A.Hanlon Mach
24 G.Joseph Microkernels
25 A.Hanlon Re: Microkernels
26 T.L’Heureux RPC performance
27 M.Walker Re: Mach
end

If we swap items 24 and 25 for all processes displaying the
bulletin does that satisfy total order?

Yes

Next Question

How do we implement ordered multicast?

Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’),

then every correct process that delivers m’ will have already
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that

delivers m’ will have already delivered m.
• Note that à counts messages delivered to the application, rather

than all network messages.
• Total ordering

• If a correct process delivers message m before m’ (independent of
the senders), then any other correct process that delivers m’ will
have already delivered m.

Implementing FIFO order multicast

Application
(at process p)

FO-multicast(g,m)

Incoming
messages

FO-deliver(m)

B-multicast(g,m)

B-deliver(m)

??

Implementing FIFO order multicast

• Each receiver maintains a per-sender sequence number
• Processes P1 through PN
• Pi maintains a vector of sequence numbers Pi[1…N] (initially all

zeroes)
• Pi[j] is the latest sequence number Pi has received from Pj

Implementing FIFO order multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
B-multicast(g,{m, Pj[j]})

• On B-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

Sequence Vector
Do not confuse with vector timestamps!

Pi[i], is the no. of messages Pi multicast (and
delivered to itself).

Pi[j] ∀j ≠ i is no. of messages delivered at Pi
from Pj.

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

Self-deliveries omitted for simplicity.

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[1,0,0,0]

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

FIFO order multicast execution

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

Time

FIFO order multicast execution

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

Time

FIFO order multicast execution

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!
[1,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

Implementing FIFO order multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
B-multicast(g, {m, Pj[j]})

• On B-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true

Implementing FIFO reliable multicast

• On FO-multicast(g,m) at process Pj:
set Pj[j] = Pj[j] + 1
piggyback Pj[j] with m as its sequence number.
R-multicast(g,{m, Pj[j]})

• On R-deliver({m, S}) at Pi from Pj: If Pi receives a multicast from Pj
with sequence number S in message

if (S == Pi[j] + 1) then
FO-deliver(m) to application
set Pi[j] = Pi[j] + 1

else buffer this multicast until above condition is true

Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and
then multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any
correct process that delivers m’ will have already delivered m.

• Note that à counts messages delivered to the application, rather
than all network messages.

• Total ordering: If a correct process delivers message m before
m’ (independent of the senders), then any other correct
process that delivers m’ will have already delivered m.

Implementing total order multicast

• Basic idea:
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS)

Implementing total order multicast

• Basic idea:
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS)

Sequencer based total ordering
• Special process elected as leader or sequencer.
• TO-multicast(g,m) at Pi:

• Send multicast message m to group g and the sequencer

• Sequencer:
• Maintains a global sequence number S (initially 0)
• When a multicast message m is B-delivered to it:

• sets S = S + 1, and B-multicast(g,{“order”, m, S})

• Receive multicast at process Pi:
• Pi maintains a local received global sequence number Si (initially 0)
• On B-deliver(m) at Pi from Pj, it buffers it until both conditions satisfied

1. B-deliver({“order”, m, S}) at Pi from sequencer, and
2. Si + 1 = S
• Then TO-deliver(m) to application and set Si = Si + 1

Implementing total order multicast

• Basic idea:
• Same sequence number counter across different processes.
• Instead of different sequence number counter for each process.

• Two types of approach
• Using a centralized sequencer
• A decentralized mechanism (ISIS)

ISIS algorithm for total ordering

2

1

1

2

2

1 Message
P2

P3

P1

P4

3 Agreed Seq

3

3

ISIS algorithm for total ordering

2

1

1

2

2

1 Message
P2

P3

P1

P4

3 Agreed Seq

3

3

• Sender multicasts message to everyone.
• Receiving processes:

• reply with proposed priority (sequence no.)
• larger than all observed agreed priorities
• larger than any previously proposed (by self) priority

• store message in priority queue
• ordered by priority (proposed or agreed)

• mark message as undeliverable
• Sender chooses agreed priority, re-multicasts message with agreed priority

• maximum of all proposed priorities
• Upon receiving agreed (final) priority

• reorder messages based on final priority.
• mark the message as deliverable.
• deliver any deliverable messages at front of priority queue.

A:2

Example: ISIS algorithm
A

B

C

A:1

B:1

B:1

A:2 C:3

C:2

C:3

B:3P1

P2

P3

A:2

How do we break ties?

• Problem: priority queue requires unique priorities.

• Solution: add process # to suggested priority.
• priority.(id of the process that proposed the priority)
• i.e., 3.2 == process 2 proposed priority 3

• Compare on priority first, use process # to break ties.
• 2.1 > 1.3
• 3.2 > 3.1

B:1.2

C:2.1

A:2.3

C:3.2

B:1.3

A:1.1

B:3.1

C:3.3B:3.1

C:3.3A:2.3

Example: ISIS algorithm
A

B

C
A:2.2

C:3.3

B:3.1P1

P2

P3

✔

✔ ✔ ✔

✔ ✔

✔ ✔

A:2.3
✔

Proof of total order with ISIS
• Consider two messages, m1 and m2, and two processes, p and p’.
• Suppose that p delivers m1 before m2.
• When p delivers m1, it is at the head of the queue. m2 is either :

• Already in p’s queue, and deliverable, so
• finalpriority(m1) < finalpriority(m2)

• Already in p’s queue, and not deliverable, so
• finalpriority(m1) < proposedpriority(m2) <= finalpriority(m2)

• Not yet in p’s queue:
• same as above, since proposed priority > priority of any

delivered message
• Suppose p’ delivers m2 before m1, by the same argument:

• finalpriority(m2) < finalpriority(m1)
• Contradiction!

Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’),

then every correct process that delivers m’ will have already
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that

delivers m’ will have already delivered m.
• Note that à counts messages delivered to the application, rather

than all network messages.
• Total ordering

• If a correct process delivers message m before m’ (independent of
the senders), then any other correct process that delivers m’ will
have already delivered m.

Implementing causal order multicast

• Similar to FIFO Multicast
• What you send with a message differs.
• Updating rules differ.

• Each receiver maintains a vector of per-sender sequence
numbers (integers)

• Processes P1 through PN.
• Pi maintains a vector of sequence numbers Pi[1…N] (initially all

zeroes).
• Pi[j] is the latest sequence number Pi has received from Pj.

Implementing causal order multicast
• CO-multicast(g,m) at Pj:

set Pj[j] = Pj[j] + 1
piggyback entire vector Pj[1…N] with m as its sequence no.
B-multicast(g,{m, Pj[1…N]})

• On B-deliver({m, V[1..N]}) at Pi from Pj: If Pi receives a multicast from
Pj with sequence vector V[1…N], buffer it until both:

1.This message is the next one Pi is expecting from Pj, i.e.,
V[j] = Pi[j] + 1

2.All multicasts, anywhere in the group, which happened-before
m have been received at Pi, i.e.,

For all k ≠ j: V[k] ≤ Pi[k]
When above two conditions satisfied,

CO-deliver(m) and set Pi[j] = V[j]

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]

Causal order multicast execution

Self-deliveries omitted for simplicity.

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

Causal order multicast execution

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

Causal order multicast execution

[1,0,0,0]
Deliver!

[1,1,0,0]

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Causal order multicast execution

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Causal order multicast execution

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Missing 1 from P1
Buffer!

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Missing 1 from P1
Buffer!

Deliver P1’s multicast, [1,0,0,0]
Causality condition true for buffered multicasts

Deliver P2’s buffered multicast, [1,1,0,0]
Deliver P4’s buffered multicast, [1,1,0,1]

Causal order multicast execution

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’),

then every correct process that delivers m’ will have already
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that

delivers m’ will have already delivered m.
• Note that à counts messages delivered to the application, rather

than all network messages.
• Total ordering

• If a correct process delivers message m before m’ (independent of
the senders), then any other correct process that delivers m’ will
have already delivered m.

Summary

• Multicast is an important communication mode in
distributed systems.

• Applications may have different requirements:
• Reliability
• Ordering: FIFO, Causal, Total
• Combinations of the above.

