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Today’s agenda

• Finally wrap-up global snapshots
• Chapter 14.5

• Multicast
• Chapter 15.4



Recap: Global snapshot 

• State of each process (and each channel) in the system at a given 
instant of time. 

• Useful to capture a global snapshot of the system:
• Checkpointing, distributed debugging, deadlock detection, garbage 

collection, etc.
• Difficult to capture global state at same instant of time.
• Capture consistent global state.

• If captured state includes an event e, it includes all other events 
that happened before e.

• Chandy-Lamport algorithm captures consistent global state. 



Chandy-Lamport Algorithm: Usefulness

• Consistent global snapshots are useful for detecting 
global system properties:

• Safety
• Liveness



More notations and definitions

• Run
• a total ordering of events that is consistent with the event 

ordering at each process.
• Linearization

• a run consistent with happens-before (®) relation.
• Linearizations pass through consistent global states.
• A global state Sk is reachable from global state Si, if there is 

a linearization that passes through Si and then through Sk.
• The distributed system evolves as a series of transitions 

between global states S0 , S1 , ….



State Transitions: Example

m

Many linearizations: 
• < p0, p1, p2, q0, q1, q2>
• < p0, q0, p1, q1, p2, q2>
• <q0, p0, p1, q1, p2, q2 >
• <q0, p0, p1, p2, q1,q2 >
• ……

• Causal order: 
• p0 →	p1 →	p2
• q0 →	q1 →	q2
• p0 →	p1 →	q1→ q2

• Concurrent:
• p0 || q0
• p1 || q0
• p2 || q0, p2 || q1, p2 || q2



State Transitions: Example
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Execution Lattice. Each path is a linear execution of events. 
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Global State Predicates

• A global-state-predicate is a property that is true or false
for a global state. 

• Is there a deadlock?
• Has the distributed algorithm terminated? 

• Two ways of reasoning about predicates (or system 
properties) as global state gets transformed by events. 

• Liveness
• Safety



Liveness
• Liveness = guarantee that something good will happen, 

eventually

• Examples:
• Guarantee that a distributed computation will terminate.
• “Completeness” in failure detectors.
• All processes eventually decide on a value. 

• A global state S0 satisfies a liveness property P iff:
• liveness(P(S0)) º "LÎ linearizations from S0,  L passes through a 

SL & P(SL) = true
• For any linearization starting from S0, P is true for some state SL

reachable from S0.



Liveness Example

q1

q2

If predicate is true only in the marked states, does it satisfy liveness? 
No



Liveness Example
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If predicate is true only in the marked states, does it satisfy liveness? 
Yes



Safety

• Safety = guarantee that something bad will never happen.

• Examples:
• There is no deadlock in a distributed transaction system.
• “Accuracy” in failure detectors.
• No two processes decide on different values.

• A global state S0 satisfies a safety property P iff:
• safety(P(S0)) º "S reachable from S0, P(S) = true.
• For all states S reachable from S0, P(S) is true.



Safety Example

q1

q2

If predicate is true only in the marked states, does it satisfy safety? 
No



Safety Example
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If predicate is true only in the unmarked states, does it satisfy safety? 
Yes



Liveness Example

q1

q2

Technically satisfies liveness, but difficult to capture or reason about. 



Stable Global Predicates

• Stable = once true, stays true forever afterwards



Stable Global Predicates
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q2

If predicate is true only in the marked states, is it stable? 
No
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If predicate is true only in the marked states, is it stable? 
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Stable Global Predicates
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If predicate is true only in the marked states, is it stable? 
Yes



Stable Global Predicates

• Stable = once true, stays true forever afterwards

• Stable liveness examples
• Computation has terminated.

• Stable non-safety examples
• There is a deadlock.
• An object is orphaned (no pointers point to it).

• All stable global properties can be detected using the Chandy-
Lamport algorithm.



Global Snapshot Summary

• The ability to calculate global snapshots in a distributed 
system is very important.

• But don’t want to interrupt running distributed application.
• Chandy-Lamport algorithm calculates global snapshot.
• Obeys causality (creates a consistent cut).
• Can be used to detect stable global properties.
• Safety vs. Liveness.



Today’s agenda

• Wrap-up global states and snapshots
• Chapter 14.5

• Multicast
• Chapter 15.4



Communication modes

• Unicast 
• Messages are sent from exactly one process to one process.

• Broadcast
• Messages are sent from exactly one process to all processes on 

the network.
• Multicast

• Messages broadcast within a group of processes. 
• A multicast message is sent from any one process to the group of 

processes on the network. 



Where is multicast used?

• Distributed storage
• Write to an object are multicast across replica servers.
• Membership information (e.g., heartbeats) is multicast across all 

servers in cluster.

• Online scoreboards (ESPN, French Open, FIFA World Cup)
• Multicast to group of clients interested in the scores.

• Stock Exchanges
• Group is the set of broker computers.

• ……



Communication modes
• Unicast 

• Messages are sent from exactly one process to one process.
• Best effort: if a message is delivered it would be intact; no reliability 

guarantees. 
• Reliable: guarantees delivery of messages.
• In order: messages will be delivered in the same order that they are sent. 

• Broadcast
• Messages are sent from exactly one process to all processes on 

the network.
• Multicast

• Messages broadcast within a group of processes. 
• A multicast message is sent from any one process to the group of 

processes on the network. 
• How do we define (and achieve) reliable or ordered multicast? 



What we are designing in this class? 

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

Incoming
messages

deliver(m)

One process p



What we are designing in this class? 

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

Incoming
messages

deliver(m)

One process p



Basic Multicast (B-Multicast)

• Straightforward way to implement B-multicast:
• use a reliable one-to-one send (unicast) operation:

B-multicast(group g, message m): 
for each process p in g, send (p,m).

receive(m): B-deliver(m) at p.
• Guarantees: message is eventually delivered to the group if:

• Processes are non-faulty.
• The unicast “send” is reliable. 
• Sender does not crash. 

• Can we provide reliable delivery even after sender crashes?



Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at 
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will 
eventually deliver m itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other 
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some 
correct process multicasts a message m, then, all correct processes 
deliver m too.



Implementing R-Multicast
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Implementing R-Multicast

On initialization
Received := {};

For process p to R-multicast message m to group g
B-multicast(g,m); (p∈ g is included as destination)

On B-deliver(m) at process q with g = group(m)
if (m ∉ Received):

Received := Received ∪ {m};
if (q ≠ p): B-multicast(g,m);
R-deliver(m)



Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at 
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will 
eventually deliver m itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other 
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some 
correct process multicasts a message m, then, all correct processes 
deliver m too.



Ordered Multicast

• Three popular flavors implemented by several multicast 
protocols:

1. FIFO ordering
2. Causal ordering
3. Total ordering



1. FIFO Order

• Multicasts from each sender are delivered in the order 
they are sent, at all receivers.

• Don’t care about multicasts from different senders.

• More formally
• If a correct process issues multicast(g,m) and then 

multicast(g,m’), then every correct process that delivers 
m’ will have already delivered m.



FIFO Order: Example

M1:1 and M1:2 should be delivered in that order at each receiver.
Order of delivery of M3:1 and M1:2 could be different at different receivers.

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1



2. Causal Order

• Multicasts whose send events are causally related, must 
be delivered in the same causality-obeying order at all 
receivers.

• More formally
• If multicast(g,m) à multicast(g,m’) then any correct 

process that delivers m’ will have already delivered m.
• (à is Lamport’s happens-before)
• (à counts messages delivered to the application, 

rather than all network messages)



Causal Order: Example

M3:1 à M3:2, M1:1 à M3:1, M1:1 à M2:1, and so should be delivered in that 
order at each receiver.
M3:1 and M2:1 are concurrent and thus ok to be delivered in different orders at 
different receivers.

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1



Causal vs FIFO

• Causal Ordering => FIFO Ordering

• Why?
• If two multicasts M and M’ are sent by the same 

process P, and M was sent before M’, then M à M’.
• Then a multicast protocol that implements causal 

ordering will obey FIFO ordering since M à M’.

• Reverse is not true! FIFO ordering does not imply causal 
ordering.



Where is causal ordering useful?

• Group = set of your friends on a social network.

• A friend sees your message m, and she posts a response 
(comment) m’ to it.

• If friends receive m’ before m, it wouldn’t make sense
• But if two friends post messages m” and n” concurrently, 

then they can be seen in any order at receivers.

• A variety of systems implement causal ordering: 
• social networks, bulletin boards, comments on websites, 

etc.



3. Total Order

• Ensures all processes deliver all multicasts in the same 
order.

• Unlike FIFO and causal, this does not pay attention to 
order of multicast sending.

• Formally
• If a correct process delivers message m before m’ 

(independent of the senders), then any other correct 
process that delivers m’ will have already delivered m.

• A reliable totally ordered multicast is also known as 
“atomic multicast”.



Total Order: Example

The order of receipt of multicasts is the same at all processes.
M1:1, then M2:1, then M3:1, then M3:2
May need to delay delivery of some messages.
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Time
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Causal vs Total

• Total ordering does not imply causal ordering.

• Causal ordering does not imply total ordering.  



Hybrid variants

• Since FIFO/Causal are orthogonal to Total, can have hybrid 
ordering protocols too.

• FIFO-total hybrid protocol satisfies both FIFO and total 
orders.

• Causal-total hybrid protocol satisfies both Causal and 
total orders.



Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and 
then multicast(g,m’), then every correct process that delivers 
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any 
correct process that delivers m’ will have already delivered m.

• Note that à counts messages delivered to the application, rather 
than all network messages.

• Total ordering: If a correct process delivers message m before 
m’ (independent of the senders), then any other correct 
process that delivers m’ will have already delivered m.



Next Question

How do we implement ordered multicast? 


