Distributed Systems

CS425/ECE428

02/12/2020

Today’s agenda

* Finally wrap-up global snapshots
* Chapter 4.5

* Multicast
* Chapter 154

Recap: Global snapshot

* State of each process (and each channel) in the system at a given
instant of time.

* Useful to capture a global snapshot of the system:
* Checkpointing, distributed debugging, deadlock detection, garbage

collection, etc.

* Difficult to capture global state at same instant of time.

* Capture consistent global state.
* If captured state includes an event e, it includes all other events

that happened before e.

* Chandy-Lamport algorithm captures consistent global state.

Chandy-Lamport Algorithm: Usefulness

* Consistent global snapshots are useful for detecting
olobal system properties:
* Safety
* Liveness

More notations and definitions

e Run

* a total ordering of events that is consistent with the event
ordering at each process.

* Linearization
* a run consistent with happens-before (—) relation.

* Linearizations pass through consistent global states.

* A global state S, Is reachable from global state S, if there Is
a linearization that passes through S. and then through S, .

* [he distributed system evolves as a series of transitions
between global states 5y, S ...

State Transitions: Example

p0 {1,0}

C,

q0 {0,1}

pl {2,0} p2 {3,0}
Py o

\J \J

'
'
v M
.

q13{2,2} q2 {2.3}
.\

7/ \J

Many linearizations:

<p0,pl,p2,q0,ql,g2>
<p0,q0,pl,ql,p2,q2>
<q0,p0,pl,ql,p2,q2 >
<q0,p0,pl,p2,ql,g2 >

e (Causal order:

pO = pl —p2
q0 - gl - g2

p0 »pl »qgl - g2

e Concurrent:

pO

o]
p2

q0
qo
q0,p2 || gql,p2 || g2

State Transitions: Example

Execution Lattice. Each path is a linear execution of events.

p0 pl p2
start »

q0 q0 q0 q0
@ p0 @ p1 @ p2 @
ql al
p0 {1,0} pl {2,0} p2 {3,0} q2
G S © g2 -
q0 {0,1} ql“:,{2,2} a2 {2.3}
.\ ya\

O \J \J

State Transitions: Example

start »

po {1 0} pl {2 0} p2 {3 0}

q0 {o 1} q1~,{2 2} q2 {2,3}

State Transitions: Example

(o) (o= (oo (Gony
start »
0 q0 0

q0 C C
1 al

p0 {1,0} pl {2,0} , p2 {3,0}
7\ 7\

C,

q0 {0.1} a2 {2,3}
G S

State Transitions: Example

(o)== (oo Com}—2 (o)
start »
q0 0 q0
pl

P
C q0
@ PO . @ p2 @
1

p0 {10} pl {2,0} \pz (3.0}
7\ 7\

€, \w \w >
q0 {0,1} q13{2,2} q2 {2,3}
C FaY ya\ I

\J \J \ -

State Transitions: Example

q0

P
q0
. . pl @ p2 @
1

p0 {1,0} pl {20} p2 {3.0} ‘

© & o >
q0 {0,1} al¥{2,2} qzh
€, S | »

.
\J

(o)== (oo Com}—2 (o)
start »
q0 q0
p0

Global State Predicates

* A global-state-predicate Is a property that is true or false
for a global state.
* |s there a deadlock!?
* Has the distributed algorithm terminated?

* Two ways of reasoning about predicates (or system
properties) as global state gets transformed by events.
* Liveness
* Safety

Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* Guarantee that a distributed computation will terminate.
* “Completeness” in faillure detectors.
* All processes eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S| & P(5)) = true
* For any linearization starting from S, P Is true for some state S,
reachable from S,

Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!
No

CadCad Oend D
start »
q0 q0 q0 q0

ql gl

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!

Yes
CadPadOmd®
start »
q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.
* “"Accuracy’ in fallure detectors.
* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:
* safety(P(Sy)) = VS reachable from Sy, P(S) = true.
* For all states S reachable from S, P(S) I1s true.

Safety Example

If predicate Is true only in the marked states, does It satisfy safety?

No
CadCad Oend D
start »
q0 q0 q0 q0
@ p0 @ p1 @ p2 @

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Safety Example

If predicate Is true only in the unmarked states, does it satisfy safety?

Yes
start »
q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

G S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S/

Liveness Example

Technically satisfies liveness, but difficult to capture or reason about.

TECECEA,
O RGN

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}

Stable Global Predicates

* Stable = once true, stays true forever afterwards

Stable Global Predicates

It predicate is true only in the marked states, Is 1t stable?
No

p0 pl p2
start »

q0 q0 q0 q0

ql gl
p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

g2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S/

Stable Global Predicates

I predicate is true only in the marked states, is 1t stable?

No
CadPadOmd®
start »
q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S/

Stable Global Predicates

It predicate is true only in the marked states, Is 1t stable?

Yes
CadPadOmd®
start »
q0 q0 q0 q0
ql

gl
> (o)
p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Stable Global Predicates

* Stable = once true, stays true forever afterwards

* Stable liveness examples
* Computation has terminated.

* Stable non-safety examples
* There Is a deadlock.
* An object Is orphaned (no pointers point to Iit).

* All stable global properties can be detected using the Chandy-
Lamport algorithm.

Global Snapshot Summary

* The ability to calculate global snapshots in a distributed
system Is very important.

* But don't want to interrupt running distributed application.
* Chandy-Lamport algorithm calculates global snapshot.

* Obeys causality (creates a consistent cut).

* Can be used to detect stable global properties.

* Safety vs. Liveness.

Today’s agenda

* Multicast
* Chapter 154

Communication modes

e Unicast
* Messages are sent from exactly one process to one process.

* Broadcast
* Messages are sent from exactly one process to all processes on
the network.
* Multicast
* Messages broadcast within a group of processes.

* A multicast message Is sent from any one process to the group of
processes on the network.

Where is multicast used?

* Distributed storage
* Write to an object are multicast across replica servers.

* Membership information (e.g., heartbeats) is multicast across all
servers In cluster.

* Online scoreboards (ESPN, French Open, FIFA World Cup)

* Multicast to group of clients interested in the scores.

* Stock Exchanges
* Group Is the set of broker computers.

Communication modes

e Unicast

* Messages are sent from exactly one process to one process.

* Best effort: if a message is delivered it would be intact; no reliability
guarantees.

* Reliable: guarantees delivery of messages.
* In order: messages will be delivered in the same order that they are sent.
* Broadcast
* Messages are sent from exactly one process to all processes on
the network.
* Multicast
* Messages broadcast within a group of processes.

* A multicast message Is sent from any one process to the group of
processes on the network.

* How do we define (and achieve) reliable or ordered multicast?

What we are designing in this class!?

Application
(at process p)

A

y—

Incoming
messages

What we are designing in this class!?

Application
(at process p)

MULTICAST PROTOCOL

Incoming
messages

Basic Multicast (B-Multicast)

* Straightforward way to implement B-multicast:
* use a reliable one-to-one send (unicast) operation:
B-multicast(group g, message m):
for each process p in g, send (p,m).
receive(m): B-deliver(m) at p.
* Guarantees: message Is eventually delivered to the group If:
* Processes are non-faulty.
* The unicast “send” Is reliable.
* Sender does not crash.

* Can we provide reliable delivery even after sender crashes?

Reliable Multicast (R-Multicast)

* Integrity: A correct (l.e., non-faulty) process p delivers a message 1 at
mMost once.

* Assumption: no process sends exactly the same message twice
* Validity: If a correct process multicasts (sends) message 111, then it will
deliver m rtself.
* Liveness for the sender.
* Agreement: If a correct process delivers message 111, then all the other
correct processes in group(m) will deliver
* All or nothing,
* Validity and agreement together ensure overall liveness: if some

correct process multicasts a message m, then, all correct processes
deliver m too.

Implementing R-Multicast

Application
(at process p)

A

y—

Incoming
messages

Implementing R-Multicast

Application
(at process p)

Incoming
messages

Implementing R-Multicast

On inrtialization
Received := {};
For process p to R-multicast message m to group g
B-multicast(g,m); (p& g is included as destination)
On B-deliver(m) at process g with ¢ = group(m)
if (m & Received):
Received := Received U {m};
it (g # p): B-multicast(g,m);
R-deliver(m)

Reliable Multicast (R-Multicast)

* Integrity: A correct (l.e., non-faulty) process p delivers a message 1 at
mMost once.

* Assumption: no process sends exactly the same message twice
* Validity: If a correct process multicasts (sends) message 111, then it will
deliver m rtself.
* Liveness for the sender.
* Agreement: If a correct process delivers message 111, then all the other
correct processes in group(m) will deliver
* All or nothing,
* Validity and agreement together ensure overall liveness: if some

correct process multicasts a message m, then, all correct processes
deliver m too.

Ordered Multicast

* Three popular flavors implemented by several multicast
protocols:

|, FIFO ordering
2. Causal ordering
3. Tlotal ordering

|. FIFO Order

e Multicasts from each sender are delivered in the order
they are sent, at all recelivers.

e Don't care about multicasts from different senders.

* More formally

* [f a correct process issues multicast(g,m) and then
multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

FIFO Order: Example

Pl
Ml1:1 M1:2 .
Time
P2
P3
P4

MI:1 and M1:2 should be delivered in that order at each receiver.
Order of delivery of M3:1 and M1:2 could be different at different receivers.

2. Causal Order

* Multicasts whose send events are causally related, must
be delivered in the same causality-obeying order at all
recelvers.

* More formally

* If multicast(g,m) = multicast(g,m’) then any correct
process that delivers m” will have already delivered m.

* (= is Lamport’s happens-before)
* (= counts messages delivered to the application,
rather than all network messages)

Causal Order: Example

Pl 1:1
Time
M2:

P2

RN

P4

M3: =2 M32, Ml = M3, MI:l = M2:],and so should be delivered in that

order at each receiver,
M3:1 and M2:| are concurrent and thus ok to be delivered in different orders at

different receivers.

Causal vs FIFO

* Causal Ordering => FIFO Ordering

* Why!
* |f two multicasts M and M’ are sent by the same
process P and M was sent before M',then M 2> M’

* Then a multicast protocol that implements causal
ordering will obey FIFO ordering since M > M.

* Reverse is not true! FIFO ordering does not imply causal
ordering.

Where is causal ordering useful?

* Group = set of your friends on a social network.

* A friend sees your message m, and she posts a response
(comment) m’ to It.

e |f friends receive m’ before m, it wouldn't make sense

* But If two friends post messages m'” and n”" concurrently,
then they can be seen in any order at receivers.

* A variety of systems implement causal ordering:

e soclial networks, bulletin boards, comments on websites,
etc.

3. Total Order

* Ensures all processes deliver all multicasts in the same
order.

* Unlike FIFO and causal, this does not pay attention to
order of multicast sending.

* Formally

* |f a correct process delivers message m before m’
(independent of the senders), then any other correct
process that delivers m” will have already delivered m.

Total Order: Example

Pl 1:1
Time
Py M2:

P3 \ ; \

P4

The order of receipt of multicasts is the same at all processes.
M. then M2:1,then M3:1, then M3:2
May need to delay delivery of some messages.

Causal vs Total

* [otal ordering does not imply causal ordering.

* Causal ordering does not imply total ordering.

Hybrid variants

* Since FIFO/Causal are orthogonal to Total, can have hybrid
ordering protocols too.

* FIFO-total hybrid protocol satisfies both FIFO and total
orders.

* Causal-total hybrid protocol satisfies both Causal and
total orders.

Ordered Multicast

* FIFO ordering: If a correct process Issues multicast(g,m) and
then multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

» Causal ordering: If multicast(g,m) = multicast(g,m’) then any
correct process that delivers m’ will have already delivered m.

* Note that = counts messages delivered to the application, rather
than all network messages.

* Total ordering: If a correct process delivers message m before
m’ (independent of the senders), then any other correct
process that delivers m” will have already delivered m.

Next Question

How do we implement ordered multicast?

