
Distributed Systems

CS425/ECE428

02/07/2020

Today’s agenda

• Wrap-up global states and snapshots
• Chapter 14.5

• Multicast
• Chapter 15.4

Recap: Timestamping events

• Comparing timestamps across events is useful.
• e.g. reconciling updates made to an object in a distributed datastore.
• e.g. rollback recovery during failures.

• How to compare timestamps across different processes?
• Physical timestamp: requires clock synchronization.

• e.g. Google’s Spanner Distributed Database uses “TrueTime”.
• Lamport’s timestamps: cannot fully differentiate between causal

and concurrent ordering of events.
• e.g. Oracle uses “System Change Numbers” based on Lamport’s clock.

• Vector timestamps: larger message sizes.
• e.g. Amazon’s DynamoDB uses vector clocks.

Recap: Global snapshot

• State of each process (and each channel) in the system at a
given instant of time.

• Useful to capture a global snapshot of the system:
• Checkpointing the system state.
• Reasoning about unreferenced objects (for garbage

collection).
• Deadlock detection.
• Distributed debugging.

Recap: Global snapshot

• State of each process (and each channel) in the system at a
given instant of time.

• Difficult to capture a global snapshot of the system.
• Requires precise clock synchronization across processes.

• How do we capture global snapshots without precise time
synchronization across processes?

• Relax the requirement for capturing the state of different
processes and channels at the same real time instant.

• As long as the global state is consistent, it is still useful.

Recap: more notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >
prefix history(pi

k) = hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
a cut C Í H = h1

c1 È h2
c2 È … È hn

c3

the frontier of C = {ei
ci, i = 1,2, … n}

global state S that corresponds to cut C = Èi (si
ci)

Recap: consistent cuts and snapshots

• A cut C is consistent if and only if
"e Î C (if f ® e then f Î C)

• A global state S is consistent if and only if it corresponds
to a consistent cut.

Recap: Example: Cut

m1 m2

p1

p2
Physical

time

e1
0

CB
CA

e 1
1 e 1

2 e 1
3

e 2
0 e 2

1 e 2
2

CA: < e1
0, e2

0>
Frontier of CA: {e1

0, e2
0}

Inconsistent cut.

CB: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 >
Frontier of CB: {e1

2, e2
2}

Consistent cut.

Recap: Consistent cuts and snapshots

• A cut C is consistent if and only if
"e Î C (if f ® e then f Î C)

• A global state S is consistent if and only if it corresponds
to a consistent cut.

• How do we find consistent global states?

Recap: Chandy-Lamport Algorithm

• Goal:
• Record a global snapshot

• Set of process state (and channel state) for a set of processes.
• The recorded global state is consistent.

• Identifies a consistent cut.

• Records corresponding state locally at each process.

Recap: Chandy-Lamport Algorithm

• System model and assumptions:
• System of n processes: <p1, p2, p3, …., pn>.
• There are two uni-directional communication channels between

each ordered process pair : pj to pi and pi to pj.
• Communication channels are FIFO-ordered (first in first out).
• All messages arrive intact, and are not duplicated.
• No failures: neither channel nor processes fail.

• Requirements:
• Snapshot should not interfere with normal application actions,

and it should not require application to stop sending messages.
• Any process may initiate algorithm.

Chandy-Lamport Algorithm Intuition

• First, initiator pi:
• records its own state.
• creates a special marker message.
• sends the marker to all other process.

• When a process receives a marker.
• records its own state.

Chandy-Lamport Algorithm Intuition

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

s1

s2

Cut frontier: {e1
2, e2

2}

Chandy-Lamport Algorithm Intuition

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

s1

s2

Cut frontier: {e1
2, e2

2}

Chandy-Lamport Algorithm Intuition

• First, initiator pi:
• records its own state.
• creates a special marker message.
• sends the marker to all other process.
• start recording messages received on other channels.

• until a marker is received on a channel.
• When a process receives a marker.

• If marker is received for the first time.
• records its own state.
• sends marker on all other channels.
• start recording messages received on other channels.

• until a marker is received on a channel.

Chandy-Lamport Algorithm

• First, initiator pi:
• records its own state.
• creates a special marker message.
• for j=1 to n except i

• pi sends a marker message on outgoing channel cij
• starts recording the incoming messages on each of the

incoming channels at pi : cji (for j=1 to n except i).

Chandy-Lamport Algorithm
Whenever a process pi receives a marker message on an incoming
channel cki

• if (this is the first marker pi is seeing)
• pi records its own state first
• marks the state of channel cki as “empty”
• for j=1 to n except i

• pi sends out a marker message on outgoing channel cij
• starts recording the incoming messages on each of the incoming

channels at pi : cji (for j=1 to n except i and k).
• else // already seen a marker message

• mark the state of channel cki as all the messages that have arrived
on it since recording was turned on for cki

Chandy-Lamport Algorithm

The algorithm terminates when
• All processes have received a marker

• To record their own state
• All processes have received a marker on all the (n-1) incoming

channels
• To record the state of all channels

P2

Time
P1

P3

A B C D E

E F G

H I J

Message
Instruction or Step

Example

p1 is initiator :
• Record local state s1,
• Send out markers
• Start recording on channels c21, c31

P2

Time
P1

P3

A B C D E

E F G

H I J

Example

s1, Record c21, c31

• First marker!
• Record own state as s3

• Mark c13 state as empty
• Start recording on other incoming c23

• Send out markers

P2

Time
P1

P3

A B C D E

E F G

H I J

Example

s1, Record c21, c31

s3
c13 = < >
Record c23

P2

Time
P1

P3

A B C D E

E F G

H I J

Example

s1, Record c21, c31

s3
c13 = < >
Record c23

Duplicate marker!
State of channel c31 = < >

P2

Time
P1

P3

A B C D E

E F G

H I J

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

• First marker
• Record own state as s2

• Mark c32 state as empty
• Turn on recording on c12
• Send out markers

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

• s2

• c32 = < >
• Record c12

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

s2

c32 = < >
Record c12

• Duplicate!
• c12 = < >

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

s2

c32 = < >
Record c12

c12 = < >

• Duplicate!
• c21 = <message G to D >

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

s2

c32 = < >
Record c12

c12 = < >

c21 = <message G to D >

• Duplicate!
• c23 = < >

Example

P2

Time
P1

P3

A B C D E

E F G

H I J

s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

s2

c32 = < >
Record c12

c12 = < >

c21 = <message G to D >

• Duplicate!
• c23 = < >

Example

Algorithm has terminated!

P2

Time
P1

P3

A B C D E

E F G

H I J

s1

s3 c13 =	<	>

c31 = < >

s2 c32 = < >

c12 = < >

c21 = <message G to D >

c23 = < >

Example

Frontier for the resulting cut:
{B, G, H}

Channel state for the cut:
Only c21 has a pending message.

P2

Time
P1

P3

A B C D E

E F G

H I J

s1

s3 c13 =	<	>

c31 = < >

s2 c32 = < >

c12 = < >

c21 = <message G to D >

c23 = < >

Global snapshots pieces can be
collected at a central location.

Example

Chandy-Lamport Algorithm: Properties

• Any run of the Chandy-Lamport Global Snapshot
algorithm creates a consistent cut.

• Let ei and ej be events occurring at pi and pj, respectively
such that

• ei à ej (ei happens before ej)
•The snapshot algorithm ensures that

if ej is in the cut then ei is also in the cut.
•That is: if ej à < pj records its state>, then

it must be true that ei à <pi records its state>.

Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and
<pi records its state> à ei.

pk

Time
pi

pj

ei

ej

m

m’

Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and
<pi records its state> à ei.

pk

Time
pi

pj

ei

ej

m

m’

Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and
<pi records its state> à ei.

pk

Time
pi

pj

ei

ej

m

m’
must reach pk before m

due to FIFO order.

Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and
<pi records its state> à ei.

pk

Time
pi

pj

ei

ej

m

m’
must reach pj before m’

due to FIFO order.

Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and
<pi records its state> à ei.

• Consider the path of app messages (through other
processes) that go from ei to ej .

• Due to FIFO ordering, markers on each link in above path
will precede regular app messages.

• Thus, since <pi records its state> à ei , it must be true that
pj received a marker before ej.

• Thus ej is not in the cut => contradiction.

Chandy-Lamport Algorithm: Usefulness

• Consistent global snapshots are useful for detecting
global system properties:

• Safety
• Liveness

Revisions: notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >
prefix history(pi

k) = hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
a cut C Í H = h1

c1 È h2
c2 È … È hn

c3

the frontier of C = {ei
ci, i = 1,2, … n}

global state S that corresponds to cut C = Èi (si
ci)

More notations and definitions

• A run is a total ordering of events in H that is consistent
with each hi’s ordering.

• A linearization is a run consistent with happens-before
(®) relation in H.

Example

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

Run: < e1
0, e1

1, e1
2, e1

3 , e2
0, e2

1 e2
2 >

Linearization: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 , e1
3 >

Order at p1: < e1
0, e1

1, e1
2, e1

3 > Order at p2: < e2
0, e2

1,e2
2>

Causal order across p1 and p2: < e1
0, e1

1, e2
0, e2

1 e2
2 , e1

3 >

Example

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

Run: < e1
0, e1

1, e1
2, e1

3 , e2
0, e2

1 e2
2 >

Linearization: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 , e1
3 >

Order at p1: < e1
0, e1

1, e1
2, e1

3 > Order at p2: < e2
0, e2

1,e2
2>

Causal order across p1 and p2: < e1
0, e1

1, e2
0, e2

1 e2
2 , e1

3 >

Example

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

< e1
0, e1

1, e2
0, e2

1 , e1
2, e2

2 , e1
3 >: Linearization

< e1
0, e2

1, e2
0 , e1

1, e1
2, e2

2 , e1
3 >: Not even a run

Order at p1: < e1
0, e1

1, e1
2, e1

3 > Order at p2: < e2
0, e2

1,e2
2>

Causal order across p1 and p2: < e1
0, e1

1, e2
0, e2

1 e2
2 , e1

3 >

More notations and definitions

• A run is a total ordering of events in H that is consistent
with each hi’s ordering.

• A linearization is a run consistent with happens-before
(®) relation in H.

• Linearizations pass through consistent global states.

Example

m1 m2

p1

p2
Physical

time

e1
0 e 1

1 e 1
2 e 1

3

e 2
0 e 2

1 e 2
2

Linearization: < e1
0, e1

1, e1
2, e2

0, e2
1 e2

2 , e1
3 >

Linearization < e1
0, e1

1, e2
0, e2

1 , e1
2, e2

2 , e1
3 >

Order at p1: < e1
0, e1

1, e1
2, e1

3 > Order at p2: < e2
0, e2

1,e2
2>

Causal order across p1 and p2: < e1
0, e1

1, e2
0, e2

1 e2
2 , e1

3 >

|

More notations and definitions

• A run is a total ordering of events in H that is consistent
with each hi’s ordering.

• A linearization is a run consistent with happens-before (®)
relation in H.

• Linearizations pass through consistent global states.

• A global state Sk is reachable from global state Si, if there is
a linearization that passes through Si and then through Sk.

• The distributed system evolves as a series of transitions
between global states S0 , S1 , ….

State Transitions: Example

m

Many linearizations:
• < p0, p1, p2, q0, q1, q2>
• < p0, q0, p1, q1, p2, q2>
• <q0, p0, p1, q1, p2, q2 >
• <q0, p0, p1, p2, q1,q2 >
• ……

• Causal order:
• p0 →	p1 →	p2
• q0 →	q1 →	q2
• p0 →	p1 →	q1→ q2

• Concurrent:
• p0 || q0
• p1 || q0
• p2 || q0, p2 || q1, p2 || q2

State Transitions: Example

q1

q2

Execution Lattice. Each path is a linear execution of events.

State Transitions: Example

q1

q2

State Transitions: Example

q1

q2

State Transitions: Example

q1

q2

State Transitions: Example

q1

q2

More notations and definitions

• A run is a total ordering of events in H that is consistent
with each hi’s ordering.

• A linearization is a run consistent with happens-before (®)
relation in H.

• Linearizations pass through consistent global states.

• A global state Sk is reachable from global state Si, if there is
a linearization that passes through Si and then through Sk.

• The distributed system evolves as a series of transitions
between global states S0 , S1 , ….

Global State Predicates

• A global-state-predicate is a property that is true or false
for a global state.

• Is there a deadlock?
• Has the distributed algorithm terminated?

• Two ways of reasoning about predicates (or system
properties) as global state gets transformed by events.

• Liveness
• Safety

Liveness
• Liveness = guarantee that something good will happen,

eventually

• Examples:
• Guarantee that a distributed computation will terminate.
• “Completeness” in failure detectors.
• All processes eventually decide on a value.

• A global state S0 satisfies a liveness property P iff:
• liveness(P(S0)) º "LÎ linearizations from S0, L passes through a

SL & P(SL) = true
• For any linearization starting from S0, P is true for some state SL

reachable from S0.

Liveness Example

q1

q2

If predicate is true only in the marked states, does it satisfy liveness?
No

Liveness Example

q1

q2

If predicate is true only in the marked states, does it satisfy liveness?
No

Liveness Example

q1

q2

If predicate is true only in the marked states, does it satisfy liveness?
Yes

Liveness
• Liveness = guarantee that something good will happen,

eventually

• Examples:
• Guarantee that a distributed computation will terminate.
• “Completeness” in failure detectors.
• All processes eventually decide on a value.

• A global state S0 satisfies a liveness property P iff:
• liveness(P(S0)) º "LÎ linearizations from S0, L passes through a

SL & P(SL) = true
• For any linearization starting from S0, P is true for some state SL

reachable from S0.

Safety

• Safety = guarantee that something bad will never happen.

• Examples:
• There is no deadlock in a distributed transaction system.
• “Accuracy” in failure detectors.
• No two processes decide on different values.

• A global state S0 satisfies a safety property P iff:
• safety(P(S0)) º "S reachable from S0, P(S) = true.
• For all states S reachable from S0, P(S) is true.

Safety Example

q1

q2

If predicate is true only in the marked states, does it satisfy safety?
No

Safety Example

q1

q2

If predicate is true only in the unmarked states, does it satisfy safety?
Yes

Safety

• Safety = guarantee that something bad will never happen.

• Examples:
• There is no deadlock in a distributed transaction system.
• “Accuracy” in failure detectors.
• No two processes decide on different values.

• A global state S0 satisfies a safety property P iff:
• safety(P(S0)) º "S reachable from S0, P(S) = true.
• For all states S reachable from S0, P(S) is true.

Global Snapshot Summary

• The ability to calculate global snapshots in a distributed
system is very important.

• But don’t want to interrupt running distributed application.
• Chandy-Lamport algorithm calculates global snapshot.
• Obeys causality (creates a consistent cut).
• Can be used to detect global properties.
• Safety vs. Liveness.

