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Today’s agenda

* Wrap-up global states and snapshots
* Chapter 4.5

*Multicast
+ Chapter454



Recap: Timestamping events

* Comparing timestamps across events is useful.
* e.g reconciling updates made to an object in a distributed datastore.
* e.g. rollback recovery during failures.

* How to compare timestamps across different processes!?
* Physical timestamp: requires clock synchronization.
* e.g Google’s Spanner Distributed Database uses “TrueTime”.

* Lamport’s timestamps: cannot fully differentiate between causal
and concurrent ordering of events.

* e.g Oracle uses "System Change Numbers" based on Lamport’s clock.

* Vector timestamps: larger message sizes.
* e.g. Amazon's DynamoDB uses vector clocks.



Recap: Global snapshot

* State of each process (and each channel) in the system at a
given Instant of time.

* Useful to capture a global snapshot of the system:
* Checkpointing the system state.
* Reasoning about unreferenced objects (for garbage
collection).
* Deadlock detection.
* Distributed debugging.



Recap: Global snapshot

* State of each process (and each channel) in the system at a
given Instant of time.

* Difficult to capture a global snapshot of the system.
* Requires precise clock synchronization across processes.

* How do we capture global snapshots without precise time

synchronization across processes?
* Relax the requirement for capturing the state of different
processes and channels at the same real time instant.
* As long as the global state is consistent, it is still useful.



Recap: more notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p) = hk=<e0e!,...,ek>
s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:
global history: H = Ui, (h))
acutCcH=h9uUh,%%U...UhS
the frontier of C = {e%,i = |,2, ... n}
global state S that corresponds to cut C = U, (s:%)



Recap: consistent cuts and snapshots

* A cut Cis consistent if and only if
Ve e C(ff > ethenf e C)

* A global state S is consistent if and only if it corresponds
to a consistent cut.



Recap: Example: Cut
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Recap: Consistent cuts and snapshots

* A cut Cis consistent if and only if
Ve e C(ff > ethenf e C)

* A global state S is consistent if and only if it corresponds
to a consistent cut.

* How do we find consistent global states’



Recap: Chandy-Lamport Algorithm

* Goal:
* Record a global snapshot
* Set of process state (and channel state) for a set of processes.

* [he recorded global state Is consistent.

 |dentifies a consistent cut.

* Records corresponding state locally at each process.



Recap: Chandy-Lamport Algorithm

* System model and assumptions:

* System of n processes: <py, Pys P3s « -« P~

e There are two uni-directional communication channels between
each ordered process pair: p;to p; and p; to p;

* Communication channels are FIFO-ordered (first in first out).
* All messages arrive intact, and are not duplicated.
* No fallures: nerther channel nor processes falil.

* Requirements:

* Snapshot should not interfere with normal application actions,
and it should not require application to stop sending messages.

* Any process may Initiate algorithm.



Chandy-Lamport Algorithm Intuition

* First, initiator p;;
* records Its own state.
* creates a special marker message.
* sends the marker to all other process.

* When a process receives a marker.
* records Iits own state.
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Chandy-Lamport Algorithm Intuition

* First, initiator p;;

records Its own state.

creates a special marker message.

sends the marker to all other process.

start recording messages received on other channels.
* until a marker is received on a channel.

* When a process receives a marker.

e [f marker is received for the first time.
* records its own state.
* sends marker on all other channels.
* start recording messages received on other channels.

e until a marker is received on a channel.



Chandy-Lamport Algorithm

* First, initiator p;;
* records rts own state.

* creates a special marker message.
* for j=1 to n excepti
* p; sends a marker message on outgoing channel ¢;
* starts recording the incoming messages on each of the
incoming channels at p;: ¢; (for j=1 to n except ).



Chandy-Lamport Algorithm

Whenever a process p; receives a marker message on an incoming
channel ¢,
* If (this is the first marker p; is seeing)

* p, records Its own state first

* marks the state of channel ¢,; as “empty”

* forj=1 to n except |

* p; sends out a marker message on outgoing channel ¢;
* starts recording the incoming messages on each of the incoming
channels at p;: ¢; (for j=1 to n except i and k).

* else /I already seen a marker message

* mark the state of channel ¢, as all the messages that have arrived
on it since recording was turned on for ¢



Chandy-Lamport Algorithm

The algorithm terminates when

* All processes have received a marker
* To record their own state
* All processes have received a marker on all the (n-1) incoming
channels
* To record the state of all channels
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Example
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Chandy-Lamport Algorithm: Properties

* Any run of the Chandy-Lamport Global Snapshot
algorithm creates a consistent cut.

* Let ; and e, be events occurring at p; and p;, respectively
such that

*e > e (ehappensbefore e)

j
* [ he snapshot algorithm ensures that
if e is in the cut then e is also In the cut.

* That is:if &, = < p; records its state>, then
it must be true that e, = <p. records its state>.



Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,
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Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

* Consider the path of app messages (through other
processes) that go from e; to e;.

* Due to FIFO ordering, markers on each link in above path
will precede regular app messages.

* Thus, since <p; records its state> =2 e, , it must be true that

p; received a marker before e;

e Thus e s not In the cut => contradiction.



Chandy-Lamport Algorithm: Usefulness

* Consistent global snapshots are useful for detecting
olobal system properties:
* Safety
* Liveness



Revisions: notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p) = hk=<e0e!,...,ek>

s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:

global history: H = U, (h))
acutCcH=h9uUh,%%U...UhS

the frontier of C = {e%,i = |,2, ... n}

global state S that corresponds to cut C = U, (s:%)



More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization Is a run consistent with happens-before
(—) relation in H.
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More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization Is a run consistent with happens-before
(—) relation in H.

* Linearizations pass through consistent global states.
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More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before (—)
relation in H.

* Linearizations pass through consistent global states.

* A global state S, Is reachable from global state S, if there Is
a linearization that passes through S. and then through §,.

* The distributed system evolves as a series of transitions
between global states Sy, S, ...



State Transitions: Example
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Many linearizations:
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State Transitions: Example

Execution Lattice. Each path is a linear execution of events.
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State Transitions: Example
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State Transitions: Example
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State Transitions: Example
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State Transitions: Example
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More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before (—)
relation in H.

* Linearizations pass through consistent global states.

* A global state S, Is reachable from global state S, if there Is
a linearization that passes through S. and then through §,.

* The distributed system evolves as a series of transitions
between global states Sy, S, ...



Global State Predicates

* A global-state-predicate Is a property that is true or false
for a global state.
* |s there a deadlock!?
* Has the distributed algorithm terminated?

* Two ways of reasoning about predicates (or system
properties) as global state gets transformed by events.
* Liveness
* Safety



Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* Guarantee that a distributed computation will terminate.
* “Completeness” in faillure detectors.
* All processes eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S| & P(5)) = true
* For any linearization starting from S, P Is true for some state S,
reachable from S,



Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!
No
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Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!
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Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!
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Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* Guarantee that a distributed computation will terminate.
* “Completeness” in faillure detectors.
* All processes eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S| & P(5)) = true
* For any linearization starting from S, P Is true for some state S,
reachable from S,



Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.
* “"Accuracy’ in fallure detectors.
* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:
* safety(P(Sy)) = VS reachable from Sy, P(S) = true.
* For all states S reachable from S, P(S) I1s true.



Safety Example

If predicate Is true only in the marked states, does It satisfy safety?
No
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Safety Example

If predicate Is true only in the unmarked states, does it satisfy safety?
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Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.
* “"Accuracy’ in fallure detectors.
* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:
* safety(P(Sy)) = VS reachable from Sy, P(S) = true.
* For all states S reachable from S, P(S) I1s true.



Global Snapshot Summary

* The ability to calculate global snapshots in a distributed
system Is very important.

* But don't want to interrupt running distributed application.
* Chandy-Lamport algorithm calculates global snapshot.

* Obeys causality (creates a consistent cut).

* Can be used to detect global properties.

* Safety vs. Liveness.



