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Today’s agenda

• Wrap-up global states and snapshots
• Chapter 14.5

• Multicast
• Chapter 15.4



Recap: Timestamping events

• Comparing timestamps across events is useful.
• e.g. reconciling updates made to an object in a distributed datastore. 
• e.g. rollback recovery during failures. 

• How to compare timestamps across different processes?
• Physical timestamp: requires clock synchronization.

• e.g. Google’s Spanner Distributed Database uses “TrueTime”.
• Lamport’s timestamps: cannot fully differentiate between causal 

and concurrent ordering of events.
• e.g. Oracle uses “System Change Numbers” based on Lamport’s clock.

• Vector timestamps: larger message sizes.
• e.g. Amazon’s DynamoDB uses vector clocks. 



Recap: Global snapshot 

• State of each process (and each channel) in the system at a 
given instant of time. 

• Useful to capture a global snapshot of the system:
• Checkpointing the system state.  
• Reasoning about unreferenced objects (for garbage 

collection).
• Deadlock detection.
• Distributed debugging.



Recap: Global snapshot 

• State of each process (and each channel) in the system at a 
given instant of time. 

• Difficult to capture a global snapshot of the system.
• Requires precise clock synchronization across processes.

• How do we capture global snapshots without precise time 
synchronization across processes?

• Relax the requirement for capturing the state of different 
processes and channels at the same real time instant. 

• As long as the global state is consistent, it is still useful. 



Recap: more notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) =  hi = <ei
0, ei

1, … >
prefix history(pi

k) =  hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
a cut C Í H = h1

c1 È h2
c2 È … È hn

c3

the frontier of C = {ei
ci, i = 1,2, … n}

global state S that corresponds to cut C = Èi (si
ci)



Recap: consistent cuts and snapshots

• A cut C is consistent if and only if
"e Î C (if f ® e then f Î C)

• A global state S is consistent if and only if it corresponds 
to a consistent cut. 



Recap: Example: Cut
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Recap: Consistent cuts and snapshots

• A cut C is consistent if and only if
"e Î C (if f ® e then f Î C)

• A global state S is consistent if and only if it corresponds 
to a consistent cut. 

• How do we find consistent global states?



Recap: Chandy-Lamport Algorithm

• Goal: 
• Record a global snapshot

• Set of process state (and channel state) for a set of processes. 
• The recorded global state is consistent. 

• Identifies a consistent cut. 

• Records corresponding state locally at each process. 



Recap: Chandy-Lamport Algorithm

• System model and assumptions:
• System of n processes: <p1, p2, p3, …., pn>. 
• There are two uni-directional communication channels between 

each ordered process pair : pj to pi and pi to pj.
• Communication channels are FIFO-ordered (first in first out).
• All messages arrive intact, and are not duplicated.
• No failures: neither channel nor processes fail. 

• Requirements:
• Snapshot should not interfere with normal application actions, 

and it should not require application to stop sending messages.
• Any process may initiate algorithm.



Chandy-Lamport Algorithm Intuition

• First, initiator pi:
• records its own state.
• creates a special marker message.
• sends the marker to all other process.

• When a process receives a marker.
• records its own state. 



Chandy-Lamport Algorithm Intuition
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Chandy-Lamport Algorithm Intuition

• First, initiator pi:
• records its own state.
• creates a special marker message.
• sends the marker to all other process.
• start recording messages received on other channels.

• until a marker is received on a channel. 
• When a process receives a marker.

• If marker is received for the first time.
• records its own state. 
• sends marker on all other channels. 
• start recording messages received on other channels.

• until a marker is received on a channel. 



Chandy-Lamport Algorithm

• First, initiator pi:
• records its own state.
• creates a special marker message.
• for j=1 to n except i

• pi sends a marker message on outgoing channel cij
• starts recording the incoming messages on each of the 

incoming channels at pi : cji (for j=1 to n except i).



Chandy-Lamport Algorithm
Whenever a process pi receives a marker message on an incoming 
channel cki

• if (this is the first marker pi is seeing) 
• pi records its own state first
• marks the state of channel cki as “empty”
• for j=1 to n except i

• pi sends out a marker message on outgoing channel cij
• starts recording the incoming messages on each of the incoming 

channels at pi : cji (for j=1 to n except i and k).
• else // already seen a marker message

• mark the state of channel cki as all the messages that have arrived 
on it since recording was turned on for cki



Chandy-Lamport Algorithm

The algorithm terminates when
• All processes have received a marker

• To record their own state
• All processes have received a marker on all the (n-1) incoming 

channels 
• To record the state of all channels
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p1 is initiator : 
• Record local state s1,
• Send out markers
• Start recording on channels c21, c31
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s1, Record c21, c31

• First marker!
• Record own state as s3

• Mark c13 state as empty 
• Start recording on other incoming c23

• Send out markers
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s1, Record c21, c31

s3
c13 = < >
Record c23
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s1, Record c21, c31

s3
c13 = < >
Record c23

Duplicate marker!
State of channel c31 = < >
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s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

• First marker
• Record own state as s2

• Mark c32 state as empty 
• Turn on recording on c12
• Send out markers

Example
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s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

• s2

• c32 = < >
• Record c12

Example
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s1, Record c21, c31

s3
c13 = < >
Record c23
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s2

c32 = < >
Record c12

• Duplicate! 
• c12 = < >

Example
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Record c12
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• Duplicate! 
• c21 = <message G to D >

Example
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s3
c13 = < >
Record c23

c31 = < >

s2

c32 = < >
Record c12

c12 = < >

c21 = <message G to D >

• Duplicate!
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s1, Record c21, c31

s3
c13 = < >
Record c23

c31 = < >

s2

c32 = < >
Record c12

c12 = < >

c21 = <message G to D >

• Duplicate!
• c23 = < >

Example

Algorithm has terminated!
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s1

s3 c13 =	<	>

c31 = < >

s2 c32 = < >

c12 = < >

c21 = <message G to D >

c23 = < >

Example

Frontier for the resulting cut:
{B, G, H}

Channel state for the cut: 
Only c21 has a pending message.
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s1

s3 c13 =	<	>

c31 = < >

s2 c32 = < >

c12 = < >

c21 = <message G to D >

c23 = < >

Global snapshots pieces can be 
collected at a central location.

Example



Chandy-Lamport Algorithm: Properties

• Any run of the Chandy-Lamport Global Snapshot 
algorithm creates a consistent cut.

• Let ei and ej be events occurring at pi and pj, respectively 
such that 

• ei à ej (ei happens before ej)
•The snapshot algorithm ensures that 

if ej is in the cut then ei is also in the cut.
•That is: if ej à < pj records its state>, then

it must be true that ei à <pi records its state>.



Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and 
<pi records its state> à ei.
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Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and 
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Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and 
<pi records its state> à ei.
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Time
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m

m’
must reach pk before m

due to FIFO order.



Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and 
<pi records its state> à ei.

pk

Time
pi

pj

ei

ej

m

m’
must reach pj before m’

due to FIFO order.



Chandy-Lamport Algorithm: Properties

• If ej à < pj records its state>, then
it must be true that ei à <pi records its state>.

• By contradiction, suppose ejà < pj records its state>, and 
<pi records its state> à ei.

• Consider the path of app messages (through other 
processes) that go from ei to ej .

• Due to FIFO ordering, markers on each link in above path 
will precede regular app messages.

• Thus, since <pi records its state> à ei , it must be true that 
pj received a marker before ej. 

• Thus ej is not in the cut => contradiction. 



Chandy-Lamport Algorithm: Usefulness

• Consistent global snapshots are useful for detecting 
global system properties:

• Safety
• Liveness



Revisions: notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) =  hi = <ei
0, ei

1, … >
prefix history(pi

k) =  hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
a cut C Í H = h1

c1 È h2
c2 È … È hn

c3

the frontier of C = {ei
ci, i = 1,2, … n}

global state S that corresponds to cut C = Èi (si
ci)



More notations and definitions

• A run is a total ordering of events in H that is consistent 
with each hi’s ordering.

• A linearization is a run consistent with happens-before 
(®) relation in H.
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Example
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More notations and definitions

• A run is a total ordering of events in H that is consistent 
with each hi’s ordering.

• A linearization is a run consistent with happens-before 
(®) relation in H.

• Linearizations pass through consistent global states.
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More notations and definitions

• A run is a total ordering of events in H that is consistent 
with each hi’s ordering.

• A linearization is a run consistent with happens-before (®) 
relation in H.

• Linearizations pass through consistent global states.

• A global state Sk is reachable from global state Si, if there is 
a linearization that passes through Si and then through Sk.

• The distributed system evolves as a series of transitions 
between global states S0 , S1 , ….



State Transitions: Example

m

Many linearizations: 
• < p0, p1, p2, q0, q1, q2>
• < p0, q0, p1, q1, p2, q2>
• <q0, p0, p1, q1, p2, q2 >
• <q0, p0, p1, p2, q1,q2 >
• ……

• Causal order: 
• p0 →	p1 →	p2
• q0 →	q1 →	q2
• p0 →	p1 →	q1→ q2

• Concurrent:
• p0 || q0
• p1 || q0
• p2 || q0, p2 || q1, p2 || q2



State Transitions: Example

q1

q2

Execution Lattice. Each path is a linear execution of events. 
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State Transitions: Example
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More notations and definitions

• A run is a total ordering of events in H that is consistent 
with each hi’s ordering.

• A linearization is a run consistent with happens-before (®) 
relation in H.

• Linearizations pass through consistent global states.

• A global state Sk is reachable from global state Si, if there is 
a linearization that passes through Si and then through Sk.

• The distributed system evolves as a series of transitions 
between global states S0 , S1 , ….



Global State Predicates

• A global-state-predicate is a property that is true or false
for a global state. 

• Is there a deadlock?
• Has the distributed algorithm terminated? 

• Two ways of reasoning about predicates (or system 
properties) as global state gets transformed by events. 

• Liveness
• Safety



Liveness
• Liveness = guarantee that something good will happen, 

eventually

• Examples:
• Guarantee that a distributed computation will terminate.
• “Completeness” in failure detectors.
• All processes eventually decide on a value. 

• A global state S0 satisfies a liveness property P iff:
• liveness(P(S0)) º "LÎ linearizations from S0,  L passes through a 

SL & P(SL) = true
• For any linearization starting from S0, P is true for some state SL

reachable from S0.



Liveness Example
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If predicate is true only in the marked states, does it satisfy liveness? 
No



Liveness Example
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If predicate is true only in the marked states, does it satisfy liveness? 
No



Liveness Example
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If predicate is true only in the marked states, does it satisfy liveness? 
Yes



Liveness
• Liveness = guarantee that something good will happen, 

eventually

• Examples:
• Guarantee that a distributed computation will terminate.
• “Completeness” in failure detectors.
• All processes eventually decide on a value. 

• A global state S0 satisfies a liveness property P iff:
• liveness(P(S0)) º "LÎ linearizations from S0,  L passes through a 

SL & P(SL) = true
• For any linearization starting from S0, P is true for some state SL

reachable from S0.



Safety

• Safety = guarantee that something bad will never happen.

• Examples:
• There is no deadlock in a distributed transaction system.
• “Accuracy” in failure detectors.
• No two processes decide on different values.

• A global state S0 satisfies a safety property P iff:
• safety(P(S0)) º "S reachable from S0, P(S) = true.
• For all states S reachable from S0, P(S) is true.



Safety Example
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If predicate is true only in the marked states, does it satisfy safety? 
No



Safety Example
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Safety

• Safety = guarantee that something bad will never happen.

• Examples:
• There is no deadlock in a distributed transaction system.
• “Accuracy” in failure detectors.
• No two processes decide on different values.

• A global state S0 satisfies a safety property P iff:
• safety(P(S0)) º "S reachable from S0, P(S) = true.
• For all states S reachable from S0, P(S) is true.



Global Snapshot Summary

• The ability to calculate global snapshots in a distributed 
system is very important.

• But don’t want to interrupt running distributed application.
• Chandy-Lamport algorithm calculates global snapshot.
• Obeys causality (creates a consistent cut).
• Can be used to detect global properties.
• Safety vs. Liveness.


