Distributed Systems

CS425/ECE428

02/07/2020

Today’s agenda

* Wrap-up global states and snapshots
* Chapter 4.5

*Multicast
+ Chapter454

Recap: Timestamping events

* Comparing timestamps across events is useful.
* e.g reconciling updates made to an object in a distributed datastore.
* e.g. rollback recovery during failures.

* How to compare timestamps across different processes!?
* Physical timestamp: requires clock synchronization.
* e.g Google’s Spanner Distributed Database uses “TrueTime”.

* Lamport’s timestamps: cannot fully differentiate between causal
and concurrent ordering of events.

* e.g Oracle uses "System Change Numbers" based on Lamport’s clock.

* Vector timestamps: larger message sizes.
* e.g. Amazon's DynamoDB uses vector clocks.

Recap: Global snapshot

* State of each process (and each channel) in the system at a
given Instant of time.

* Useful to capture a global snapshot of the system:
* Checkpointing the system state.
* Reasoning about unreferenced objects (for garbage
collection).
* Deadlock detection.
* Distributed debugging.

Recap: Global snapshot

* State of each process (and each channel) in the system at a
given Instant of time.

* Difficult to capture a global snapshot of the system.
* Requires precise clock synchronization across processes.

* How do we capture global snapshots without precise time

synchronization across processes?
* Relax the requirement for capturing the state of different
processes and channels at the same real time instant.
* As long as the global state is consistent, it is still useful.

Recap: more notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p) = hk=<e0e!,...,ek>
s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:
global history: H = Ui, (h))
acutCcH=h9uUh,%%U...UhS
the frontier of C = {e%,i = |,2, ... n}
global state S that corresponds to cut C = U, (s:%)

Recap: consistent cuts and snapshots

* A cut Cis consistent if and only if
Ve e C(ff > ethenf e C)

* A global state S is consistent if and only if it corresponds
to a consistent cut.

Recap: Example: Cut

0 1 2 3
e, \ e e \ e
® @ o >
P1
My m,
e ° . Physical
P2 i
0 1 2 ime
€o \ €o €o \
Ca Cg
Ch<ele0l> Ci<elelle?ele) e?>
Frontier of C,:{e |, e,% Frontier of C;: {e,? e,%}

Inconsistent cut. Consistent cut.

Recap: Consistent cuts and snapshots

* A cut Cis consistent if and only if
Ve e C(ff > ethenf e C)

* A global state S is consistent if and only if it corresponds
to a consistent cut.

* How do we find consistent global states’

Recap: Chandy-Lamport Algorithm

* Goal:
* Record a global snapshot
* Set of process state (and channel state) for a set of processes.

* [he recorded global state Is consistent.

 |dentifies a consistent cut.

* Records corresponding state locally at each process.

Recap: Chandy-Lamport Algorithm

* System model and assumptions:

* System of n processes: <py, Pys P3s « -« P~

e There are two uni-directional communication channels between
each ordered process pair: p;to p; and p; to p;

* Communication channels are FIFO-ordered (first in first out).
* All messages arrive intact, and are not duplicated.
* No fallures: nerther channel nor processes falil.

* Requirements:

* Snapshot should not interfere with normal application actions,
and it should not require application to stop sending messages.

* Any process may Initiate algorithm.

Chandy-Lamport Algorithm Intuition

* First, initiator p;;
* records Its own state.
* creates a special marker message.
* sends the marker to all other process.

* When a process receives a marker.
* records Iits own state.

Chandy-Lamport Algorithm Intuition

P1
m2 /
AI

Cut frontier: {e,?, e,?}

~ Physical
time

Chandy-Lamport Algorithm Intuition

P1 ’
9 A/ -~ Physical

0 time

Cut frontier: {e,?, e,?}

Chandy-Lamport Algorithm Intuition

* First, initiator p;;

records Its own state.

creates a special marker message.

sends the marker to all other process.

start recording messages received on other channels.
* until a marker is received on a channel.

* When a process receives a marker.

e [f marker is received for the first time.
* records its own state.
* sends marker on all other channels.
* start recording messages received on other channels.

e until a marker is received on a channel.

Chandy-Lamport Algorithm

* First, initiator p;;
* records rts own state.

* creates a special marker message.
* for j=1 to n excepti
* p; sends a marker message on outgoing channel ¢;
* starts recording the incoming messages on each of the
incoming channels at p;: ¢; (for j=1 to n except).

Chandy-Lamport Algorithm

Whenever a process p; receives a marker message on an incoming
channel ¢,
* If (this is the first marker p; is seeing)

* p, records Its own state first

* marks the state of channel ¢,; as “empty”

* forj=1 to n except |

* p; sends out a marker message on outgoing channel ¢;
* starts recording the incoming messages on each of the incoming
channels at p;: ¢; (for j=1 to n except i and k).

* else /I already seen a marker message

* mark the state of channel ¢, as all the messages that have arrived
on it since recording was turned on for ¢

Chandy-Lamport Algorithm

The algorithm terminates when

* All processes have received a marker
* To record their own state
* All processes have received a marker on all the (n-1) incoming
channels
* To record the state of all channels

Example

B D E
Pl A
Time
P2 G >
P3 ® !
®

Instruction or Step
~ Message

Example

B
Pl 0

P3

Example

B
Pl 0

P2 k 3

.

Example

B
Pl 0

P2 k 3

.

Example

B
Pl 0

P2 k 3

.

Example

Cy €3y C31
B D E

Pl o S

Time

F
P9 E G .
P3 I‘ J
Ci3 Cs;
C23

Example

Cy €3y C31
B D E
Pl o S
Time
F
P2 G
P3 I‘ J
Ci3 - ¢,

Example

Cy €3y C31
B D E

p — S

Time

F
P2 G >
P3 Iy J
Ci3 €32 .. Ci2

Example

Ca
€,,;€3, C31
B D E

Pl o S

Time

F

P9 E G .
P3 H - J

C

Cis C32 . 12

Example

C2i
€,,;€3, C31
B D E
Pl s S
Time
F

P2 G >
P3 Iy J

C32 Ciy

Ci3 €5
€23

Example

%)
€,,;€3, C31
B D E
Pl o S
Time
F

P9 E G .
P3 I‘ J

C3)

Ci3 €5 =
€23

Algorithm has terminated!

Example

C2
C3y
A B < C D E
P -
==/ Time
E P G/ ¢
J 12
P2 7
/, C32
> 4
o
/T/, J
7z 1
P3 v, PS
C3
Ci3

Frontier for the resulting cut:
{B, G, H}

Channel state for the cut:
Only c,, has a pending message.

Example

Cyi
C3y
B D E
Pl o S
Time

P2 A G ik :

C32
P3 H - J

C23

Global snapshots pieces can be
collected at a central location.

Chandy-Lamport Algorithm: Properties

* Any run of the Chandy-Lamport Global Snapshot
algorithm creates a consistent cut.

* Let ; and e, be events occurring at p; and p;, respectively
such that

*e > e (ehappensbefore e)

j
* [he snapshot algorithm ensures that
if e is in the cut then e is also In the cut.

* That is:if &, = < p; records its state>, then
it must be true that e, = <p. records its state>.

Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

Pj

Pk ®
\n,
[]

Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

Pj

Pk ®
\n,
[]

Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

Pj

Px must reach p, before m *
due to FIFO order. m’
)

Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

<

e e >
Pi °
m Time
Py o ®
XY
must reach p; before m’ e

P; due to FIFO order S

Chandy-Lamport Algorithm: Properties

* If & = < p, records its state>, then
it must be true that e, = <p. records its state>.

* By contradiction, suppose e; 2 < p; records its state>, and
<p, records its state> 2> e,

* Consider the path of app messages (through other
processes) that go from e; to e;.

* Due to FIFO ordering, markers on each link in above path
will precede regular app messages.

* Thus, since <p; records its state> =2 e, , it must be true that

p; received a marker before e;

e Thus e s not In the cut => contradiction.

Chandy-Lamport Algorithm: Usefulness

* Consistent global snapshots are useful for detecting
olobal system properties:
* Safety
* Liveness

Revisions: notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p) = hk=<e0e!,...,ek>

s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:

global history: H = U, (h))
acutCcH=h9uUh,%%U...UhS

the frontier of C = {e%,i = |,2, ... n}

global state S that corresponds to cut C = U, (s:%)

More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization Is a run consistent with happens-before
(—) relation in H.

Example

0 1) 3
e, e, e; e;
@ o o >
P1
mjy m,
" o -
0 1 2 \
€

Physical
time

P2
€o €o

Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p, and p,: <e\% ¢!, e)% e, &2, e3>

Run:<e%ele?e?, 06 2>
Linearization: < e\% e,!,e,%,&,% e,' €,%2,¢,3>

Example

0 1) 3
e, e, e; e;
@ o o >
P1
mjy m,
" o _
0 1 2 \
€

Physical
time

P2
€ €

Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p, and p,: <e\% ¢!, e)% e, &2, e3>

Run: < e|0, e||, e|2, e|39e20a e2| e22>
Linearization: < e % e, e,%,&,% ¢, e,2,¢,°>

Example

P4
my
“o) -~ Physical

P2 0 1 time

Orderatp;:<elel e?e?> Orderatp, < ezo, e, e,’>
Causal order across p, and p,: <e\% ¢!, e)% e, &2, e3>

<elelele,, e?e,?, e3> Linearization
<ebe e0e!e?e? e3> Notevenarun

More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization Is a run consistent with happens-before
(—) relation in H.

* Linearizations pass through consistent global states.

Example

0 1) 3
e, e, e; e;
@ o o >
P1
mjy m,
" o _
0 1 2 \
€

Physical
time

P2
€ €

Orderatp;:<eel e?e?> Orderatp,;<eV’ele?>
Causal order across p, and p,: <e\% ¢!, e)% e, &2, e3>

Linearization: < e|°, e |, e|2, 62°| e2' e22,e|3 >
Linearization <e/%¢,',e,%¢e,',e2e,%,¢3>

More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before (—)
relation in H.

* Linearizations pass through consistent global states.

* A global state S, Is reachable from global state S, if there Is
a linearization that passes through S. and then through §,.

* The distributed system evolves as a series of transitions
between global states Sy, S, ...

State Transitions: Example

p0 {1,0}

C,

q0 {0,1}

pl {2,0} p2 {3,0}
Py o

\J \J

'
'
v M
.

q13{2,2} q2 {2.3}
.\

7/ \J

Many linearizations:

<p0,pl,p2,q0,ql,g2>
<p0,q0,pl,ql,p2,q2>
<q0,p0,pl,ql,p2,q2 >
<q0,p0,pl,p2,ql,g2 >

e (Causal order:

pO = pl —p2
q0 - gl - g2

p0 »pl »qgl - g2

e Concurrent:

pO

o]
p2

q0
qo
q0,p2 || gql,p2 || g2

State Transitions: Example

Execution Lattice. Each path is a linear execution of events.

p0 pl p2
start »

q0 q0 q0 q0
@ p0 @ p1 @ p2 @
ql al
p0 {1,0} pl {2,0} p2 {3,0} q2
G S © g2 -
q0 {0,1} ql“:,{2,2} a2 {2.3}
.\ ya\

O \J \J

State Transitions: Example

start »

po {1 0} pl {2 0} p2 {3 0}

q0 {o 1} q1~,{2 2} q2 {2,3}

State Transitions: Example

(o) (o= (oo (Gony
start »
0 q0 0

q0 C C
1 al

p0 {1,0} pl {2,0} , p2 {3,0}
7\ 7\

C,

q0 {0.1} a2 {2,3}
G S

State Transitions: Example

(o)== (oo Com}—2 (o)
start »
q0 0 q0
pl

P
C q0
@ PO . @ p2 @
1

p0 {10} pl {2,0} \pz (3.0}
7\ 7\

€, \w \w >
q0 {0,1} q13{2,2} q2 {2,3}
C FaY ya\ I

\J \J \ -

State Transitions: Example

q0

P
q0
. . pl @ p2 @
1

p0 {1,0} pl {20} p2 {3.0} ‘

© & o >
q0 {0,1} al¥{2,2} qzh
€, S | »

.
\J

(o)== (oo Com}—2 (o)
start »
q0 q0
p0

More notations and definitions

* A run is a total ordering of events in H that Is consistent
with each h/'s ordering.

* A linearization is a run consistent with happens-before (—)
relation in H.

* Linearizations pass through consistent global states.

* A global state S, Is reachable from global state S, if there Is
a linearization that passes through S. and then through §,.

* The distributed system evolves as a series of transitions
between global states Sy, S, ...

Global State Predicates

* A global-state-predicate Is a property that is true or false
for a global state.
* |s there a deadlock!?
* Has the distributed algorithm terminated?

* Two ways of reasoning about predicates (or system
properties) as global state gets transformed by events.
* Liveness
* Safety

Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* Guarantee that a distributed computation will terminate.
* “Completeness” in faillure detectors.
* All processes eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S| & P(5)) = true
* For any linearization starting from S, P Is true for some state S,
reachable from S,

Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!
No

CadCad Oend D
start »
q0 q0 q0 q0

ql gl

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!

No
CadCad Oend D
start »
q0 q0 q0 q0
@ p0 @ p1 @ p2 @

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Liveness Example

If predicate Is true only in the marked states, does It satisfy liveness!

Yes
CadPadOmd®
start »
q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Liveness

* Liveness = guarantee that something good will happen,
eventually

* Examples:
* Guarantee that a distributed computation will terminate.
* “Completeness” in faillure detectors.
* All processes eventually decide on a value.

* A global state S, satisfies a liveness property P iff:
* liveness(P(Sy)) = VL0Le linearizations from Sy, L passes through a
S| & P(5)) = true
* For any linearization starting from S, P Is true for some state S,
reachable from S,

Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.
* “"Accuracy’ in fallure detectors.
* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:
* safety(P(Sy)) = VS reachable from Sy, P(S) = true.
* For all states S reachable from S, P(S) I1s true.

Safety Example

If predicate Is true only in the marked states, does It satisfy safety?
No

CadCad Oend D
start »
q0 q0 q0 q0

ql gl

p0 {1,0} pl {2,0} p2 {3,0}

€] S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S

Safety Example

If predicate Is true only in the unmarked states, does it satisfy safety?

Yes
start »
q0 q0 q0 q0

p0 {1,0} pl {2,0} p2 {3,0}

G S S > q2

q0 {0,1} ql“:,{2,2} a2 {2.3}
.\

G © S/

Safety

* Safety = guarantee that something bad will never happen.

* Examples:
* There is no deadlock in a distributed transaction system.
* “"Accuracy’ in fallure detectors.
* No two processes decide on different values.

* A global state S, satisfies a safety property P iff:
* safety(P(Sy)) = VS reachable from Sy, P(S) = true.
* For all states S reachable from S, P(S) I1s true.

Global Snapshot Summary

* The ability to calculate global snapshots in a distributed
system Is very important.

* But don't want to interrupt running distributed application.
* Chandy-Lamport algorithm calculates global snapshot.

* Obeys causality (creates a consistent cut).

* Can be used to detect global properties.

* Safety vs. Liveness.

