Distributed Systems

CS425/ECE428

02/05/2020

Logistics

* Campus cluster access for MPO:

* All requests sent by last Friday should have received access.

* Other requests are getting processed.

* If you have any specific concerns that have not yet been
addressed, please see Prof. Borisov after class.

* Please reach out If you require any DRES related
accommodations.

Today’s agenda

* Wrap up logical clocks
* Chapter 14.4

* Global states and snapshots
* Chapter 14.5

Recap from last class: clock synchronization

* Cristian Algorithm

* Synchronization between a client and a server.
* Synchronization bound = (1 ./ 2) —min < T

round — 'round

/2
* Berkeley Algorithm

* Internal synchronization between clocks.
* A central server picks the average time and disseminates
offsets.

* Network Time Protocol
* Hierarchical time synchronization over the Internet.
* Symmetric mode synchronization for better accuracy.

Event Ordering

* A usecase of synchronized clocks:
* Reasoning about order of events.

e Can we reason about order of events without
synchronized clocks?

Event Ordering

* Fasy to order events within a single process p;, based on
their time of occurrence.

* How do we reason about events across processes!
* A message must be sent before it gets received at
another process.

* These two notions help define happened-before (HB)
relationship denoted by —.
* e = e means e happened before ¢€’.

Happened-Before Relationship

* Happened-before (HB) relationship denoted by —.
* e = € means e happened before €.
* e >. e means e happened before €’, as observed by p;.

* HB rules:

*|f3p ,e—> e thene—> e’

* For any message m, send(m) — receive(m)
*lfe—>eande’ > e’ thene - ¢”

* Also called “potentially causal” ordering.

Lamport’s Logical Clock

* Logical timestamp for each event that captures the
happened-before relationship.

* Algorithm: Each process p.
| inttializes local clock L, = 0.
2. Increments L, before timestamping each event.
3. piggybacks L, when sending a message.
4. upon receiving a message with clock value t
* sets L, = max(t, L)
* increments L, (as per point 2).

Lamport’s Logical Clock

* Logical timestamp for each event that captures the
happened-before relationship.

* |[fe = e’ then L(e) < L(¢)

* What if L(e) < L(e’)!
* We cannot say that e — €’
* We can say. e’ » e
* Eithere - e’ orel| €

Logical Timestamps: Example

P4

P2

P3

o 1 2

a b\MZ)
0 . £2 > 0) 4

.. Physical

time

, (4)

3
¢ d m
0 1

e

_(4>1).
f5

L(e) < L(d), e || d L(e) < L(f), e > f

Vector Clocks

* Fach event associated with a vector timestamp.

* Fach process maintains vector of clocks V.
* Vi[j] is the clock for process p;

* Algorithm: each process p;:
| inttializes local clock Vi[j] =0
2. Increments V/[i] before timestamping each event.
3. piggybacks V. when sending a message.
4. upon recelving a message with clock value t
* setsV,[j] = max(V]j], t[j]) for all j=1...n.
* increments V,[i] (as per point 2).

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]
p1 @ P

a b\M[Z,0,0])
0,0,0
[p2] L, o [2,2,0] Physia
240 time
C[] d m2 ([212;0])
[0} D;O] [0’0’1]
P3 s

8 >
© f [2}2;2]

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]
p1 @ P

. b my ([2,0,0])
0,9,0 [Lﬁﬂ
[p2’ = o e 12,3,2] . Physical
2,1,0 |
|]C d mo ([2,3,2]) time
[0,p,0] [0,0,1] ([0,0,2])
P3 s

8 >
e g [0,0,2] ¢ [2,33]

Comparing Vector Timestamps
* et V(e) =V and V(¢e’) =V’

V=V, iff V[i]=V[i]foralli=1 ... n
-V <V, iff V[i]<VIi]foralli=1,...,n
c V<V, iff VSV &V %V

ff V<V &3 jsuch that (V[j] <V[j])

ce—elff V<V
* (V< V implese > ¢€’)and (e » € implies V <V’)

ce||eiff (V<£V and V <V)

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]

P4

P2

[0
P3

a b\M[Z,0,0])
[0,9,0] . [2,2,0]

’ ° .. Physical

c[2,1,0] d m, ([2,2,0]) time
POl 10,0,1]

8 >
f [2}2;2]

V(e) <V(f),e = f
V(e) <« V(d) andV(d) « V(e),e || d

Vector Timestamps: Example

[0,0,0] [1,0,0] [2,0,0]

P1 ® e
a b\”[Z,0,0])
0’),0 [212;2]
[pz‘I] 2o LI [2,3,2] . Physical
[2,1,0] . q m, ((2,3,2]) time

[0,p,0] [0,0,1] ([0,0,2])
P3 8 2 >

e g [0,0,2] f [213;3]

V(e) <V(f)e - f
V(e) <V(d), e > d

Timestamps Summary

* Comparing timestamps across events is useful.
* Reconciling updates made to an object in a distributed datastore.

* Rollback recovery during failures:

|. Checkpoint state of the system; 2. Log events (with timestamps);
3. Rollback to checkpoint and replay events in order if system crashes.

* How to compare timestamps across different processes!?
* Physical timestamp: requires clock synchronization.
* Google's Spanner Distributed Database uses “TrueTime”.

* Lamport’s timestamps: cannot fully differentiate between causal
and concurrent ordering of events.

* Oracle uses “System Change Numbers” based on Lamport’s clock.

* Vector timestamps: larger message sizes.
* Amazon's DynamoDB uses vector clocks.

Timestamps Summary

* Comparing timestamps across events is useful.
* Reconciling updates made to an object in a distributed datastore.

* Rollback recovery during failures:

|. Checkpoint state of the system; 2. Log events (with timestamps);
3. Rollback to checkpoint and replay events in order if system crashes.

* How to compare timestamps across different processes!?
* Physical timestamp: requires clock synchronization.
* Google's Spanner Distributed Database uses “TrueTime”.

* Lamport’s timestamps: cannot fully differentiate between causal
and concurrent ordering of events.

* Oracle uses “System Change Numbers” based on Lamport’s clock.

* Vector timestamps: larger message sizes.
* Amazon's DynamoDB uses vector clocks.

Process, state, events

* Consider a system with n processes: <py, P P3s - - -+ Pp>>

n

* Each process p; Is associated with state s..
e State includes values of all local variables, affected files, etc.

* Each channel can also be associated with a state.
* Which messages are currently pending on the channel.
* Can be computed from process’ state:
* Record when a process sends and receives messages.
* if p; sends a message that p; has not yet received, it is pending
on the channel.

* State of a process (or a channel) gets transformed when an event
occurs. 3 types of events:
* local computation, sending a message, receiving a message.

Global State (or Global Snapshot)

* State of each process (and each channel) in the system at a
given instant of time.

* Example:

Col

Two processes: p, and p,
C|,: channel from p, to p, C,,: channel from p, to p;.

Global State (or Global Snapshot)

* State of each process (and each channel) in the system at a
given instant of time.

* Example:
Cjy: [empty]
X,:0
Y,:0
Z,.0
Cyi: [empty]

Process state for p; and p,
No pending messages on the channels.

Global State (or Global Snapshot)

* State of each process (and each channel) in the system at a
given instant of time.

* Example:
cp: [X; = 4]
X,:0
Y,:0
Z,0
Cyi: [empty]

P, send a message to p, asking it to set X, = 4

Global State (or Global Snapshot)

* State of each process (and each channel) in the system at a
given instant of time.

* Example:
Cjy: [empty]
X,:0
Y,:0
Z,.0
Cyi: [empty]

P, receives the message.

Global State (or Global Snapshot)

* State of each process (and each channel) in the system at a
given instant of time.

* Example:
Cjy: [empty]
X,:0
Y,:0
Z,.0
Cyi: [empty]

P, changes the value of X,

Capturing a global snapshot

* Useful to capture a global snapshot of the system:
* Checkpointing the system state.
* Reasoning about unreferenced objects (for garbage
collection).
* Deadlock detection.
* Distributed debugging.

Capturing a global snapshot

* Difficult to capture a global snapshot of the system.

* Global state or global snapshot is state of each process
(and each channel) in the system at a given instant of time.

* Strawman:
* Fach process records its state at 3:15pm.
* We get the global state of the system at 3:15pm.
* But precise clock synchronization is difficult to achieve.

* How do we capture global snapshots without
precise time synchronization across processes?

Some more notations and definitions

* Consider a system with n processes: <py, P P3s - - -+ Pp>>

n

* Each process p; Is associated with state s..
e State includes values of all local variables, affected files, etc.

* Each channel can also be associated with a state.
* Which messages are currently pending on the channel.
* Can be computed from process’ state:
* Record when a process sends and receives messages.
* if p; sends a message that p; has not yet received, it is pending
on the channel.

* State of a process (or a channel) gets transformed when an event
occurs. 3 types of events:
* local computation, sending a message, receiving a message.

Some more notations and definitions

* Consider a system with n processes: <py, P P3s - - -+ Pp>>

n

* Each process p; Is associated with state s..
e State includes values of all local variables, affected files, etc.

* Each channel can also be associated with a state.
* Which messages are currently pending on the channel.
* Can be computed from process’ state:
* Record when a process sends and receives messages.
* if p; sends a message that p; has not yet received, it is pending
on the channel.

* State of a process (or a channel) gets transformed when an event
occurs. e] is the [!" event at p.. 3 types of events:
* local computation, sending a message, receiving a message.

Some more notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p) = hk=<e0e!,...,ek>

s p/s state immediately after k" event.
* For a set of processes <py, Py P3» - -+ Pn:

global history: H = U, (h)
global state: S = U, (s))

Some more notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p) = hk=<e0e!,...,ek>

s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:

global history: H = U, (h))
global state: S = Ui (s))
But state at what time instant’

Some more notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p) = hk=<e0e!,...,ek>

s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:

global history: H = U, (h))

global state: S = U, (s%)
acutCcH=hSUh,%U ... UhS

the frontier of C = {e%,i = |,2, ... n}

global state S that corresponds to cut C = U, (s:%)

Example: Cut

0 1 2 3
e, \ e, e’ \ e;
® ® ® >
P1
e ° ~ Physical
P2 ti
. 1) ime
€o €o e
Ca Cg
Ch<ele0l> Ci<elelle?ele) e?>

Frontier of C,:{e,° ¢,% Frontier of Cg:{e,? e,%}

Some more notations and definitions

 Fora process p;, where events €%, e/, ... occur:
history(p) = h, =<ef%e/, ... >
prefix history(p) = hk=<e0e!,...,ek>

s p/’s state immediately after k" event.
* For a set of processes <py, Pys P3» - -+ Pn:

global history: H = U, (h))

global state: S = U, (s%)
acutCcH=hSUh,%U ... UhS

the frontier of C = {e%,i = |,2, ... n}

global state S that corresponds to cut C = U, (s:%)

Consistent cuts and snapshots

* A cut Cis consistent if and only if
Ve e C(ff > ethenf e C)

Example: Cut

0 1 2 3
e, \ e e \ e
® @ o >
P1
My m,
e ° . Physical
P2 i
0 1 2 ime
€o \ €o €o \
Ca Cg
Ch<ele0l> Ci<elelle?ele) e?>
Frontier of C,:{e |, e,% Frontier of C;: {e,? e,%}

Inconsistent cut. Consistent cut.

Consistent cuts and snapshots

* A cut Cis consistent if and only if
Ve e C(ff > ethenf e C)

* A global state S is consistent if and only if it corresponds
to a consistent cut.

Example: Cut

0 1 2 3
e, \ e e \ e
® @ o >
P1
My m,
e ° . Physical
P2 i
0 1 2 ime
€o \ €o €o \
Ca Cg
Ch<ele0l> Ci<elelle?ele) e?>
Frontier of C,:{e |, e,% Frontier of C;: {e,? e,%}

Inconsistent cut. Consistent cut.

Consistent cuts and snapshots

* A cut Cis consistent if and only if
Ve e C(ff > ethenf e C)

* A global state S is consistent if and only if it corresponds
to a consistent cut.

* How do we find consistent global states’

Chandy-Lamport Algorithm

* Goal:
* Record a global snapshot
* Set of process state (and channel state) for a set of processes.
* [he recorded global state Is consistent.

 |dentifies a consistent cut.

* Records corresponding state locally at each process.

Chandy-Lamport Algorithm

* System model and assumptions:

* System of n processes: <py, Pys P3s « -« P~

e There are two uni-directional communication channels between
each ordered process pair: p;to p; and p; to p;

* Communication channels are FIFO-ordered (first in first out).
* All messages arrive intact, and are not duplicated.
* No fallures: nerther channel nor processes falil.

* Requirements:

* Snapshot should not interfere with normal application actions,
and it should not require application to stop sending messages.

* Any process may Initiate algorithm.

Chandy-Lamport Algorithm Intuition

* First, initiator p;;
* records Its own state.
* creates a special marker message.
* sends the marker to all other process.

* When a process receives a marker.
* records Iits own state.

Chandy-Lamport Algorithm Intuition

* First, initiator p;;
* records Its own state.
* creates a special marker message.
* sends the marker to all other process.
* start recording messages received on other channels.

* When a process receives a marker.
* records Its own state.

Chandy-Lamport Algorithm Intuition

P1
m2 /
AI

Cut frontier: {e,?, e,?}

~ Physical
time

Chandy-Lamport Algorithm Intuition

P1 ’
9 A/ -~ Physical

0 time

Cut frontier: {e,?, e,?}

Chandy-Lamport Algorithm Intuition

* First, initiator p;;

records Its own state.

creates a special marker message.

sends the marker to all other process.

start recording messages received on other channels.
* until a marker is received on a channel.

* When a process receives a marker.

e [f marker is received for the first time.
* records its own state.
* sends marker on all other channels.
* start recording messages received on other channels.

e until a marker is received on a channel.

Chandy-Lamport Algorithm

* First, initiator p;;
* records rts own state.

* creates a special marker message.
* for j=1 to n excepti
* p; sends a marker message on outgoing channel ¢;
* starts recording the incoming messages on each of the
incoming channels at p;: ¢; (for j=1 to n except).

Chandy-Lamport Algorithm

Whenever a process p; receives a marker message on an incoming
channel ¢,
* If (this is the first marker p; is seeing)

* p, records Its own state first

* marks the state of channel ¢,; as “empty”

* forj=1 to n except |

* p; sends out a marker message on outgoing channel ¢;
* starts recording the incoming messages on each of the incoming
channels at p;: ¢; (for j=1 to n except i and k).

* else /I already seen a marker message

* mark the state of channel ¢, as all the messages that have arrived
on it since recording was turned on for ¢

Chandy-Lamport Algorithm

The algorithm terminates when

* All processes have received a marker
* To record their own state
* All processes have received a marker on all the (n-1) incoming
channels
* To record the state of all channels

Summary

* The ability to calculate global snapshots in a distributed
system Is very important.

* But don't want to interrupt running distributed application.
* Chandy-Lamport algorithm calculates global snapshot.

* Obeys causality (creates a consistent cut).

