Distributed Systems

CS425/ECE428

01/31/2020

Today's agenda

- Clock synchronization
	- Chapter 14.1-14.3
- Logical clocks
	- Chapter 14.4

Recap from last class: Failures

- Three types: *omission, arbitrary, timing*.
- Failure detection (detecting a crashed process):
	- Send periodic ping-acks or heartbeats.
	- Report crash if no response until a timeout.
	- Timeout can be precisely computed for synchronous systems and estimated for asynchronous.
	- Metrics: *completeness, accuracy, failure detection time, bandwidth.*
	- Failure detection for a system with multiple processes:
		- Centralized, ring, all-to-all
		- Trade-off between completeness and bandwidth usage.

Recap from last class: Clocks

- Useful to compare timestamps across processes (or know *accurate* time).
- Clocks in different computers show different times.
	- Clock skew: relative difference between two clock values.
- Clocks in different computers drift at different rates.
	- Clock drift rate: change in skew from a perfect reference clock per unit time (measured by the reference clock).
- Need for *synchronization*:
	- *External:* with an authoritative clock, for achieving accuracy
	- *Internal:* among the processes within a distributed system.

Synchronization of clocks

What time T_c should client adjust its local clock to after receiving m_s ?

Synchronization in synchronous systems

What time T_c should client adjust its local clock to after receiving m.?

Let *max* and *min* be maximum and minimum network delay. If $T_c = T_s$, skew(client, server) \leq max. If $T_c = (T_s + max)$, skew(client, server) \leq (max – min) If Tc = (Ts + min), skew(client, server) ≤ *(max – min)* $T_c = (T_s + (min + max)/2)$, skew(client,server) $\leq (max - min)/2$

Synchronization in asynchronous systems

- Cristian Algorithm
- Berkeley Algorithm
- Network Time Protocol

What time T_c should client adjust its local clock to after receiving m.?

Client measures the round trip time (T_{round}) .

 $T_c = T_s + (T_{round} / 2)$

skew \leq (T_{round} / 2) – *min* (*min* is minimum one way network delay).

Try deriving the worst case skew!

Hint: *client is assuming its one-way delay from server* (Δ) *is* $T_{round}/2$ *. How off can it be?*

What time T_c should client adjust its local clock to after receiving m_s ?

What time T_c should client adjust its local clock to after receiving m.?

Client measures the round trip time (T_{round}) .

 $T_c = T_s + (T_{round} / 2)$

skew \leq (T_{round} / 2) – *min* (*min* is minimum one way network delay).

Improve accuracy by sending multiple spaced requests and using response with smallest T_{round} .

Server failure: Use multiple synchronized time servers.

What time T_c should client adjust its local clock to after receiving m.?

Client measures the round trip time (T_{round}) . $T_c = T_s + (T_{round} / 2)$ skew \leq (T_{round} / 2) – *min* (*min* is minimum one way network delay).

Cannot handle faulty time servers.

Only supports internal synchronization.

1. Server periodically polls clients: *"what time do you think it is?"*

Only supports internal synchronization.

- 1. Server periodically polls clients: *"what time do you think it is?"*
- 2. Each client responds with its local time.
- 3. Server uses Cristian algorithm to estimate local time at each client.
- 4. Average all local times (including its own) – use as updated time.

Only supports internal synchronization.

- 1. Server periodically polls clients: *"what time do you think it is?"*
- 2. Each client responds with its local time.
- 3. Server uses Cristian algorithm to estimate local time at each client.
- 4. Average all local times (including its own) – use as updated time.
- 5. Send the offset (amount by which each clock needs adjustment).

Only supports internal synchronization.

Handling faulty processes: Only use timestamps within some threshold of each other.

Handling server failure: Detect the failure and elect a new leader.

Network Time Protocol

Time service over the Internet for synchronizing to UTC.

Hierarchical structure for *scalability*. Multiple lower strata servers for *robustness*. Authentication mechanisms for *security*. Statistical techniques for better *accuracy*.

Network Time Protocol

How clocks get synchronized:

- Servers may *multicast* timestamps within a LAN. Clients adjust time assuming a small delay. *Low accuracy*.
- *Procedure-call* (Cristian algorithm). *Higher accuracy.*
- Symmetric mode used to synchronize lower strata servers. *Highest accuracy*.

A and B exchange messages and record the send and receive timestamps.

Use these timestamps to compute offset with respect to one another (o_i) .

- t and t': actual transmission times for m and m'(unknown)
- o: true offset of clock at B
- o_i: estimate of actual offset between the two clocks
- \bullet d_i: estimate of **accuracy** of \circ_i ; total transmission times for m and m'; $d_i = t + t'$

$$
T_{i-2} = T_{i-3} + t + o
$$

$$
T_i = T_{i-1} + t' - o
$$

relative to clock at A (unknown) $d_i = t + t' = (T_{i-2} - T_{i-3}) + (T_i - T_{i-1})$ $O_i = ((T_{i-2} - T_{i-3}) - (T_i - T_{i-1}))/2$ $o = o_i + (t'-t)/2$

- t and t': actual transmission times for m and m'(unknown)
- o: true offset of clock at B
- o_i: estimate of actual offset between the two clocks
- \bullet d_i: estimate of **accuracy** of \circ_i ; total transmission times for m and m'; $d_i = t + t'$

$$
T_{i-2} = T_{i-3} + t + o
$$

$$
T_i = T_{i-1} + t' - o
$$

relative to clock at A (unknown) $d_i = t + t' = (T_{i-2} - T_{i-3}) + (T_i - T_{i-1})$ $O_i = ((T_{i-2} - T_{i-3}) - (T_i - T_{i-1}))/2$ $o = o_i + (t'-t)/2$ t, $t' \geq 0$ $(o_i - d_i / 2) \le o \le (o_i + d_i / 2)$

A and B exchange messages and record the send and receive timestamps.

Use these timestamps to compute offset with respect to one another (o_i) .

A server computes its offset from multiple different sources and adjust its local time accordingly.

Synchronization in asynchronous systems

- Cristian Algorithm
	- Synchronization between a client and a server.
	- Synchronization bound = $(T_{round} / 2)$ min $\leq T_{round} / 2$
- Berkeley Algorithm
	- Internal synchronization between clocks.
	- A central server picks the average time and disseminates offsets.
- Network Time Protocol
	- Hierarchical time synchronization over the Internet.

Event Ordering

- A usecase of synchronized clocks:
	- Reasoning about order of events.
- Can we reason about order of events without synchronized clocks?

Process, state, events

- Consider a system with **n** processes: <p₁, p₂, p₃,, p_n>
- Each process **p**_i is described by its *state* **s**_i that gets transformed over time.
	- State includes values of all local variables, affected files, etc.
- s_i gets transformed when an *event* occurs.
- Three types of events:
	- Local computation.
	- Sending a message.
	- Receiving a message.

Event ordering

- Easy to order events within a single process, based on timestamps.
	- e_i^j is the jth event of the ith process.
	- history(p_i) = $h_i = \langle e_i^0, e_i^1, e_i^1, \dots e_i^m \rangle$
	- Initial state

Event Ordering

- Easy to order events within a single process p_i , based on their time of occurrence.
- How do we reason about events across processes?
	- A message must be *sent* before it gets *received* at another process.
- These two notions help define *happened-before* (HB) relationship denoted by \rightarrow .
	- e → e' means e *happened before* e'.

Happened-Before Relationship

- *Happened-before* (HB) relationship denoted by →.
	- e → e' means e *happened before* e'.
	- **e** →_i e' means **e** happened before **e**', as observed by p_i .
- HB rules:
	- If $\exists p_i$, $e \rightarrow e'$ then $e \rightarrow e'$.
	- For any message m, send(m) \rightarrow receive(m)
	- If $e \rightarrow e'$ and $e' \rightarrow e''$ then $e \rightarrow e''$
- Also called *"potentially causal"* ordering.

Event Ordering: Example

Event Ordering: Example

a and e are *concurrent*.

Event Ordering: Example

What can we say about **e** and **d**? e || d

Logical Timestamps: Example

Lamport's Logical Clock

- Logical timestamp for each event that captures the *happened-before* relationship.
- Algorithm: Each process p_i
	- 1. initializes local clock $L_i = 0$.
	- 2. increments L_i before timestamping each event.
	- 3. piggybacks L_i when sending a message.
	- 4. upon receiving a message with clock value t
		- sets $L_i = max(t, L_i)$
		- increments L_i (as per point 2).

Logical Timestamps: Example

Logical Timestamps: Example

Lamport's Logical Clock

- Logical timestamp for each event that captures the *happened-before* relationship.
- If $e \rightarrow e'$ then $L(e) < L(e')$
- What if $L(e) < L(e')$?
	- We cannot say that $e \rightarrow e'$
	- We can say: $e' \nrightarrow e$
	- Either $e \rightarrow e'$ or $e \mid\mid e'$

Logical Timestamps: Example

- Each event associated with a vector timestamp.
- Each process maintains vector of clocks V_i
	- V_i[j] is the clock for process p_j
- Algorithm: each process p_i : :
:
	- 1. initializes local clock $L_i = 0$.
	- 2. increments L_i before timestamping each event.
	- 3. piggybacks L_i when sending a message.
	- 4. upon receiving a message with clock value t
		- sets $L_i = max(t, L_i)$
		- \bullet increments L_{i} (as per point 2).

- Each event associated with a vector timestamp.
- Each process maintains vector of clocks V_i
	- V_i[j] is the clock for process p_j
- Algorithm: each process p_i : :
:
	- 1. initializes local clock $V_i[j] = 0$
	- 2. increments L_i before timestamping each event.
	- 3. piggybacks L_i when sending a message.
	- 4. upon receiving a message with clock value t
		- sets $L_i = max(t, L_i)$
		- \bullet increments L_{i} (as per point 2).

- Each event associated with a vector timestamp.
- Each process maintains vector of clocks V_i
	- V_i[j] is the clock for process p_j
- Algorithm: each process p_i : :
:
	- 1. initializes local clock $V_i[j] = 0$
	- 2. increments V_i[i] before timestamping each event.
	- 3. piggybacks L_i when sending a message.
	- 4. upon receiving a message with clock value t
		- sets $L_i = max(t, L_i)$
		- increments L_i (as per point 2).

- Each event associated with a vector timestamp.
- Each process maintains vector of clocks V_i
	- V_i[j] is the clock for process p_j
- Algorithm: each process p_i : :
:
	- 1. initializes local clock $V_i[j] = 0$
	- 2. increments V_i[i] before timestamping each event.
	- 3. piggybacks V_i , when sending a message.
	- 4. upon receiving a message with clock value t
		- sets $L_i = max(t, L_i)$
		- increments **L**_i (as per point 2).

- Each event associated with a vector timestamp.
- Each process maintains vector of clocks V_i
	- V_i[j] is the clock for process p_j
- Algorithm: each process p_i : :
:
	- 1. initializes local clock $V_i[j] = 0$
	- 2. increments V_i[i] before timestamping each event.
	- 3. piggybacks V_i , when sending a message.
	- 4. upon receiving a message with clock value t
		- sets $V_i[j] = max(V_i[j], t[j])$ for all $j = 1...n$.
		- increments $V_i[i]$ (as per point 2).

Vector Timestamps: Example

Vector Timestamps: Example

Comparing Vector Timestamps

• Let
$$
V(e) = V
$$
 and $V(e') = V'$

- $V=V'$, iff $V[i] = V'[i]$, for all $i = 1, ..., n$
- $V \leq V$, iff $V[i] \leq V'[i]$, for all $i = 1, ..., n$
- $V < V'$, iff $V \leq V' \& V \neq V'$

iff $V \leq V' \& \exists j$ such that $(V[j] \leq V'[j])$

- $e \rightarrow e'$ iff $V \leq V'$
	- (V < V' implies $e \rightarrow e'$) and $(e \rightarrow e'$ implies V < V')
- e || e' iff ($V \le V'$ and $V' \le V$)

Vector Timestamps: Example

Vector Timestamps: Example

Summary

- Time synchronization important for distributed systems
	- Cristian's algorithm
	- Berkeley algorithm
	- NTP
- Relative order of events enough for practical purposes
	- Lamport's logical clocks
	- Vector clocks
- Next class: Global State and Snapshots

HW1 will be released tonight!

- We will release HWI by tonight.
- Announcement and submission instructions will be made available on Campuswire.
- Due on Feb 13, 11:59pm.
- Relevant material for the last I-2 questions will get covered by next week.