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Today’s agenda

• Clock synchronization
• Chapter 14.1-14.3

• Logical clocks 
• Chapter 14.4



Recap from last class: Failures

• Three types: omission, arbitrary, timing.

• Failure detection (detecting a crashed process):
• Send periodic ping-acks or heartbeats.
• Report crash if no response until a timeout.
• Timeout can be precisely computed for synchronous systems 

and estimated for asynchronous.
• Metrics: completeness, accuracy, failure detection time, bandwidth.
• Failure detection for a system with multiple processes:

• Centralized, ring, all-to-all
• Trade-off between completeness and bandwidth usage. 



Recap from last class: Clocks

• Useful to compare timestamps across processes (or know 
accurate time).

• Clocks in different computers show different times.
• Clock skew: relative difference between two clock values.

• Clocks in different computers drift at different rates. 
• Clock drift rate: change in skew from a perfect reference clock per 

unit time (measured by the reference clock).

• Need for synchronization:
• External: with an authoritative clock, for achieving accuracy
• Internal: among the processes within a distributed system. 



Synchronization of clocks

What time Tc should client adjust its local clock to after receiving ms ?

client server

mr: What is the time?

ms : It is Ts

Ts

Tc  = Ts + ∆
∆

But the value of ∆ is unknown. 



Synchronization in synchronous systems

Let max and min be maximum and minimum network delay. 
If Tc = Ts, skew(client, server) ≤	max.
If Tc = (Ts + max), skew(client, server) ≤	(max – min)
If Tc = (Ts + min), skew(client, server) ≤	(max – min)
Tc  = (Ts + (min + max)/2), skew(client,server) ≤	(max – min)/2

What time Tc should client adjust its local clock to after receiving ms ?

client server

mr: What is the time?

ms : It is Ts



Synchronization in asynchronous systems

• Cristian Algorithm

• Berkeley Algorithm

• Network Time Protocol 



Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Client measures the round 
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
(min is minimum one way  
network delay).

Try deriving the worst case skew!

Hint: client is assuming its one-way 
delay from server (∆) is Tround/2. How off 
can it be?  



Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Client measures the round 
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
(min is minimum one way  
network delay).

t

Ts = t + min

Ts + Tround - min 
t

Ts = t + Tround - min

Ts + min

(∆ = Tround – min)

(∆ = min)



Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Client measures the round 
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
(min is minimum one way 
network delay).

Improve accuracy by sending multiple 
spaced requests and using response 
with smallest Tround.

Server failure: Use multiple 
synchronized time servers. 



Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Client measures the round 
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
(min is minimum one way 
network delay).

Cannot handle 
faulty time 
servers.



Berkeley Algorithm

1. Server periodically polls clients: 
“what time do you think it is?”

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

? ?

?

?

?



Berkeley Algorithm

1. Server periodically polls clients: 
“what time do you think it is?”

2. Each client responds with its local 
time.

3. Server uses Cristian algorithm to 
estimate local time at each client.

4. Average all local times (including 
its own) – use as updated time.

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

t1 t2

t3

t4

t5



Berkeley Algorithm

1. Server periodically polls clients: 
“what time do you think it is?”

2. Each client responds with its local 
time.

3. Server uses Cristian algorithm to 
estimate local time at each client.

4. Average all local times (including 
its own) – use as updated time.

5. Send the offset (amount by 
which each clock needs 
adjustment). 

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

𝑜1 𝑜2

𝑜3

𝑜4

𝑜5



Berkeley Algorithm

Handling faulty processes:
Only use timestamps within 
some threshold of each other. 

Handling server failure:
Detect the failure and elect a 
new leader. 

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

t1 t2

t3

t4

t5



Strata 3, 
synched by the 
secondary

Network Time Protocol

Time service over the Internet for synchronizing to UTC. 

1

2 2 2

3 3 3 3 3 3

Hierarchical structure for scalability.
Multiple lower strata servers for robustness.
Authentication mechanisms for security.
Statistical techniques for better accuracy. 

Primary, UTC synch

Secondary, 
synched primary

A
ccuracy



Network Time Protocol

How clocks get synchronized:
• Servers may multicast timestamps within a LAN. Clients 

adjust time assuming a small delay. Low accuracy.
• Procedure-call (Cristian algorithm). Higher accuracy. 
• Symmetric mode used to synchronize lower strata 

servers. Highest accuracy.

Strata 3, 
synched by the 
secondary

1

2 2 2

3 3 3 3 3 3

Primary, UTC synch

Secondary, 
synched primary



NTP Symmetric Mode

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

A and B exchange messages and record the send and receive 
timestamps. 
Use these timestamps to compute offset with respect to one 
another (oi).



NTP Symmetric Mode

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

• t and t’: actual transmission times 
for m and m’(unknown)

• o:  true offset of clock at B 
relative to clock at A (unknown)

• oi: estimate of actual offset   
between the two clocks

• di: estimate of accuracy of oi ;
total transmission times for m 
and m’; di=t+t’

Ti-2 = Ti-3 + t + o 
Ti = Ti-1 + t’ – o
di = t + t’ = (Ti-2 - Ti-3) + (Ti - Ti-1)
oi = ((Ti-2 - Ti-3) - (Ti -Ti-1))/2
o = oi + (t’ – t)/2



NTP Symmetric Mode

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

• t and t’: actual transmission times 
for m and m’(unknown)

• o:  true offset of clock at B 
relative to clock at A (unknown)

• oi: estimate of actual offset   
between the two clocks

• di: estimate of accuracy of oi ;
total transmission times for m 
and m’; di=t+t’

Ti-2 = Ti-3 + t + o 
Ti = Ti-1 + t’ – o
di = t + t’ = (Ti-2 - Ti-3) + (Ti - Ti-1)
oi = ((Ti-2 - Ti-3) - (Ti -Ti-1))/2
o = oi + (t’ – t)/2
t, t’ ≥ 0
(oi – di / 2) ≤ o ≤ (oi + di / 2) 



NTP Symmetric Mode

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

A and B exchange messages and record the send and receive 
timestamps. 
Use these timestamps to compute offset with respect to one 
another (oi).
A server computes its offset from multiple different sources and 
adjust its local time accordingly. 



Synchronization in asynchronous systems

• Cristian Algorithm
• Synchronization between a client and a server.
• Synchronization bound = (Tround / 2) – min ≤Tround / 2 

• Berkeley Algorithm
• Internal synchronization between clocks. 
• A central server picks the average time and disseminates 

offsets. 

• Network Time Protocol 
• Hierarchical time synchronization over the Internet. 



Event Ordering

• A usecase of synchronized clocks:
• Reasoning about order of events. 

• Can we reason about order of events without 
synchronized clocks? 



Process, state, events

• Consider a system with n processes: <p1, p2, p3, …., pn>

• Each process pi is described by its state si that gets 
transformed over time. 

• State includes values of all local variables, affected files, etc. 

• si gets transformed when an event occurs. 
• Three types of events: 

• Local computation.
• Sending a message.
• Receiving a message.



Event ordering

• Easy to order events within a single process, based on timestamps. 
• ei

j is the jth event of the ith process. 
• history(pi) = hi = < ei

0, ei
1, ei

1, …. ei
m >

• Initial state 



Event Ordering

• Easy to order events within a single process pi, based on 
their time of occurrence. 

• How do we reason about events across processes?
• A message must be sent before it gets received at 

another process.  

• These two notions help define happened-before (HB)
relationship  denoted by →.

• e → e’ means e happened before e’. 



Happened-Before Relationship

• Happened-before (HB) relationship  denoted by →.
• e → e’ means e happened before e’. 
• e →i e’ means e happened before e’, as observed by pi. 

• HB rules:
• If ∃ pi , e →i e’ then e → e’.
• For any message m, send(m) → receive(m)
• If e → e’ and e’ → e” then e → e’’

• Also called “potentially causal” ordering.



Event Ordering: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

Which event happened first?
a → b and b → c and c → d and d → f
a → b and a → c and a → d and a → f



Event Ordering: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

What can we say about e?
e → f 

a → e and e → a 
a || e

a and e are concurrent.

/ /



Event Ordering: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

What can we say about e and d?
e || d



Logical Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

g

h

What can we say about e and d?
e → d



Lamport’s Logical Clock

• Logical timestamp for each event that captures the 
happened-before relationship.

• Algorithm: Each process pi

1. initializes local clock Li = 0.
2. increments Li before timestamping each event.
3. piggybacks Li when sending a message.
4. upon receiving a message with clock value t

• sets Li = max(t, Li)
• increments Li (as per point 2). 



Logical Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

1 20

(2)

0 (2	>	0)

3

0

4

(4)

1 (4	>	1)

5



Logical Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

1 20

(2)

0

3

0

5

(5)

1

6g

h

2

(2)

4



Lamport’s Logical Clock

• Logical timestamp for each event that captures the 
happened-before relationship.

• If e → e’ then L(e) < L(e’)

• What if L(e) < L(e’)?
• We cannot say that e → e’
• We can say: e’ → e 
• Either e → e’ or e || e’

/



Logical Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

1 20

(2)

0 (2	>	0)

3

0

4

(4)

1 (4	>	1)

5

L(e) < L(d), e || d L(e) < L(f), e → f



Vector Clocks
• Each event associated with a vector timestamp.
• Each process maintains vector of clocks Vi

• Vi[j] is the clock for process pj

• Algorithm: each process pi:
1. initializes local clock Li = 0.
2. increments Li before timestamping each event.
3. piggybacks Li when sending a message.
4. upon receiving a message with clock value t

• sets Li = max(t, Li)
• increments Li (as per point 2). 



Vector Clocks
• Each event associated with a vector timestamp.
• Each process maintains vector of clocks Vi

• Vi[j] is the clock for process pj

• Algorithm: each process pi:
1. initializes local clock Vi[j] = 0
2. increments Li before timestamping each event.
3. piggybacks Li when sending a message.
4. upon receiving a message with clock value t

• sets Li = max(t, Li)
• increments Li (as per point 2). 



Vector Clocks
• Each event associated with a vector timestamp.
• Each process maintains vector of clocks Vi

• Vi[j] is the clock for process pj

• Algorithm: each process pi:
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• increments Li (as per point 2). 



Vector Clocks
• Each event associated with a vector timestamp.
• Each process maintains vector of clocks Vi

• Vi[j] is the clock for process pj

• Algorithm: each process pi:
1. initializes local clock Vi[j] = 0 
2. increments Vi[i] before timestamping each event.
3. piggybacks Vi when sending a message.
4. upon receiving a message with clock value t

• sets Li = max(t, Li)
• increments Li (as per point 2). 



Vector Clocks
• Each event associated with a vector timestamp.
• Each process maintains vector of clocks Vi

• Vi[j] is the clock for process pj

• Algorithm: each process pi:
1. initializes local clock Vi[j] = 0 
2. increments Vi[i] before timestamping each event.
3. piggybacks Vi when sending a message.
4. upon receiving a message with clock value t

• setsVi[j] = max(Vi[j], t[j]) for all j=1…n.
• increments Vi[i] (as per point 2). 



Vector Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

Assign a vector timestamp to each event!



Vector Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

g

h

Assign a vector timestamp to each event!



Comparing Vector Timestamps
• Let  V(e) = V and V(e’) = V’

• V= V’,  iff V[i] = V’[i], for all i = 1, … , n
• V ≤	V’,  iff V[i] ≤V’[i], for all i = 1, … , n
• V < V’,  iff V ≤V’ &V ≠	V’

iff V ≤V’ & $ j such that (V[j] < V’[j])

• e → e’ iff V < V’
• (V <  V’ implies e → e’ ) and (e → e’ implies V < V’)

• e || e’ iff (V ≮V’ and V’ ≮V)



Vector Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

Compare vector timestamps between e & f and e & d.



Vector Timestamps: Example

p1

p2

p3

a b

c d

e f

m1
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Physical
time

g

h

Compare vector timestamps between e & f and e & d.



Summary

• Time synchronization important for distributed systems
• Cristian’s algorithm
• Berkeley algorithm
• NTP

• Relative order of events enough for practical purposes
• Lamport’s logical clocks
• Vector clocks

• Next class: Global State and Snapshots



HW1 will be released tonight!

• We will release HW1 by tonight.

• Announcement and submission instructions will be made 
available on Campuswire.

• Due on Feb 13, 11:59pm.

• Relevant material for the last1-2 questions will get covered 
by next week. 


