
Distributed Systems

CS425/ECE428

01/31/2020

Today’s agenda

• Clock synchronization
• Chapter 14.1-14.3

• Logical clocks
• Chapter 14.4

Recap from last class: Failures

• Three types: omission, arbitrary, timing.

• Failure detection (detecting a crashed process):
• Send periodic ping-acks or heartbeats.
• Report crash if no response until a timeout.
• Timeout can be precisely computed for synchronous systems

and estimated for asynchronous.
• Metrics: completeness, accuracy, failure detection time, bandwidth.
• Failure detection for a system with multiple processes:

• Centralized, ring, all-to-all
• Trade-off between completeness and bandwidth usage.

Recap from last class: Clocks

• Useful to compare timestamps across processes (or know
accurate time).

• Clocks in different computers show different times.
• Clock skew: relative difference between two clock values.

• Clocks in different computers drift at different rates.
• Clock drift rate: change in skew from a perfect reference clock per

unit time (measured by the reference clock).

• Need for synchronization:
• External: with an authoritative clock, for achieving accuracy
• Internal: among the processes within a distributed system.

Synchronization of clocks

What time Tc should client adjust its local clock to after receiving ms ?

client server

mr: What is the time?

ms : It is Ts

Ts

Tc = Ts + ∆
∆

But the value of ∆ is unknown.

Synchronization in synchronous systems

Let max and min be maximum and minimum network delay.
If Tc = Ts, skew(client, server) ≤	max.
If Tc = (Ts + max), skew(client, server) ≤	(max – min)
If Tc = (Ts + min), skew(client, server) ≤	(max – min)
Tc = (Ts + (min + max)/2), skew(client,server) ≤	(max – min)/2

What time Tc should client adjust its local clock to after receiving ms ?

client server

mr: What is the time?

ms : It is Ts

Synchronization in asynchronous systems

• Cristian Algorithm

• Berkeley Algorithm

• Network Time Protocol

Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Client measures the round
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
(min is minimum one way
network delay).

Try deriving the worst case skew!

Hint: client is assuming its one-way
delay from server (∆) is Tround/2. How off
can it be?

Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Client measures the round
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
(min is minimum one way
network delay).

t

Ts = t + min

Ts + Tround - min
t

Ts = t + Tround - min

Ts + min

(∆ = Tround – min)

(∆ = min)

Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Client measures the round
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
(min is minimum one way
network delay).

Improve accuracy by sending multiple
spaced requests and using response
with smallest Tround.

Server failure: Use multiple
synchronized time servers.

Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Client measures the round
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
(min is minimum one way
network delay).

Cannot handle
faulty time
servers.

Berkeley Algorithm

1. Server periodically polls clients:
“what time do you think it is?”

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

? ?

?

?

?

Berkeley Algorithm

1. Server periodically polls clients:
“what time do you think it is?”

2. Each client responds with its local
time.

3. Server uses Cristian algorithm to
estimate local time at each client.

4. Average all local times (including
its own) – use as updated time.

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

t1 t2

t3

t4

t5

Berkeley Algorithm

1. Server periodically polls clients:
“what time do you think it is?”

2. Each client responds with its local
time.

3. Server uses Cristian algorithm to
estimate local time at each client.

4. Average all local times (including
its own) – use as updated time.

5. Send the offset (amount by
which each clock needs
adjustment).

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

𝑜1 𝑜2

𝑜3

𝑜4

𝑜5

Berkeley Algorithm

Handling faulty processes:
Only use timestamps within
some threshold of each other.

Handling server failure:
Detect the failure and elect a
new leader.

Only supports internal synchronization.

Server
Client

Client Client

Client
Client

t1 t2

t3

t4

t5

Strata 3,
synched by the
secondary

Network Time Protocol

Time service over the Internet for synchronizing to UTC.

1

2 2 2

3 3 3 3 3 3

Hierarchical structure for scalability.
Multiple lower strata servers for robustness.
Authentication mechanisms for security.
Statistical techniques for better accuracy.

Primary, UTC synch

Secondary,
synched primary

A
ccuracy

Network Time Protocol

How clocks get synchronized:
• Servers may multicast timestamps within a LAN. Clients

adjust time assuming a small delay. Low accuracy.
• Procedure-call (Cristian algorithm). Higher accuracy.
• Symmetric mode used to synchronize lower strata

servers. Highest accuracy.

Strata 3,
synched by the
secondary

1

2 2 2

3 3 3 3 3 3

Primary, UTC synch

Secondary,
synched primary

NTP Symmetric Mode

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

A and B exchange messages and record the send and receive
timestamps.
Use these timestamps to compute offset with respect to one
another (oi).

NTP Symmetric Mode

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

• t and t’: actual transmission times
for m and m’(unknown)

• o: true offset of clock at B
relative to clock at A (unknown)

• oi: estimate of actual offset
between the two clocks

• di: estimate of accuracy of oi ;
total transmission times for m
and m’; di=t+t’

Ti-2 = Ti-3 + t + o
Ti = Ti-1 + t’ – o
di = t + t’ = (Ti-2 - Ti-3) + (Ti - Ti-1)
oi = ((Ti-2 - Ti-3) - (Ti -Ti-1))/2
o = oi + (t’ – t)/2

NTP Symmetric Mode

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

• t and t’: actual transmission times
for m and m’(unknown)

• o: true offset of clock at B
relative to clock at A (unknown)

• oi: estimate of actual offset
between the two clocks

• di: estimate of accuracy of oi ;
total transmission times for m
and m’; di=t+t’

Ti-2 = Ti-3 + t + o
Ti = Ti-1 + t’ – o
di = t + t’ = (Ti-2 - Ti-3) + (Ti - Ti-1)
oi = ((Ti-2 - Ti-3) - (Ti -Ti-1))/2
o = oi + (t’ – t)/2
t, t’ ≥ 0
(oi – di / 2) ≤ o ≤ (oi + di / 2)

NTP Symmetric Mode

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

A and B exchange messages and record the send and receive
timestamps.
Use these timestamps to compute offset with respect to one
another (oi).
A server computes its offset from multiple different sources and
adjust its local time accordingly.

Synchronization in asynchronous systems

• Cristian Algorithm
• Synchronization between a client and a server.
• Synchronization bound = (Tround / 2) – min ≤Tround / 2

• Berkeley Algorithm
• Internal synchronization between clocks.
• A central server picks the average time and disseminates

offsets.

• Network Time Protocol
• Hierarchical time synchronization over the Internet.

Event Ordering

• A usecase of synchronized clocks:
• Reasoning about order of events.

• Can we reason about order of events without
synchronized clocks?

Process, state, events

• Consider a system with n processes: <p1, p2, p3, …., pn>

• Each process pi is described by its state si that gets
transformed over time.

• State includes values of all local variables, affected files, etc.

• si gets transformed when an event occurs.
• Three types of events:

• Local computation.
• Sending a message.
• Receiving a message.

Event ordering

• Easy to order events within a single process, based on timestamps.
• ei

j is the jth event of the ith process.
• history(pi) = hi = < ei

0, ei
1, ei

1, …. ei
m >

• Initial state

Event Ordering

• Easy to order events within a single process pi, based on
their time of occurrence.

• How do we reason about events across processes?
• A message must be sent before it gets received at

another process.

• These two notions help define happened-before (HB)
relationship denoted by →.

• e → e’ means e happened before e’.

Happened-Before Relationship

• Happened-before (HB) relationship denoted by →.
• e → e’ means e happened before e’.
• e →i e’ means e happened before e’, as observed by pi.

• HB rules:
• If ∃ pi , e →i e’ then e → e’.
• For any message m, send(m) → receive(m)
• If e → e’ and e’ → e” then e → e’’

• Also called “potentially causal” ordering.

Event Ordering: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

Which event happened first?
a → b and b → c and c → d and d → f
a → b and a → c and a → d and a → f

Event Ordering: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

What can we say about e?
e → f

a → e and e → a
a || e

a and e are concurrent.

/ /

Event Ordering: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

What can we say about e and d?
e || d

Logical Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

g

h

What can we say about e and d?
e → d

Lamport’s Logical Clock

• Logical timestamp for each event that captures the
happened-before relationship.

• Algorithm: Each process pi

1. initializes local clock Li = 0.
2. increments Li before timestamping each event.
3. piggybacks Li when sending a message.
4. upon receiving a message with clock value t

• sets Li = max(t, Li)
• increments Li (as per point 2).

Logical Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

1 20

(2)

0 (2	>	0)

3

0

4

(4)

1 (4	>	1)

5

Logical Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

1 20

(2)

0

3

0

5

(5)

1

6g

h

2

(2)

4

Lamport’s Logical Clock

• Logical timestamp for each event that captures the
happened-before relationship.

• If e → e’ then L(e) < L(e’)

• What if L(e) < L(e’)?
• We cannot say that e → e’
• We can say: e’ → e
• Either e → e’ or e || e’

/

Logical Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

1 20

(2)

0 (2	>	0)

3

0

4

(4)

1 (4	>	1)

5

L(e) < L(d), e || d L(e) < L(f), e → f

Vector Clocks
• Each event associated with a vector timestamp.
• Each process maintains vector of clocks Vi

• Vi[j] is the clock for process pj

• Algorithm: each process pi:
1. initializes local clock Li = 0.
2. increments Li before timestamping each event.
3. piggybacks Li when sending a message.
4. upon receiving a message with clock value t

• sets Li = max(t, Li)
• increments Li (as per point 2).

Vector Clocks
• Each event associated with a vector timestamp.
• Each process maintains vector of clocks Vi

• Vi[j] is the clock for process pj

• Algorithm: each process pi:
1. initializes local clock Vi[j] = 0
2. increments Li before timestamping each event.
3. piggybacks Li when sending a message.
4. upon receiving a message with clock value t

• sets Li = max(t, Li)
• increments Li (as per point 2).

Vector Clocks
• Each event associated with a vector timestamp.
• Each process maintains vector of clocks Vi

• Vi[j] is the clock for process pj

• Algorithm: each process pi:
1. initializes local clock Vi[j] = 0
2. increments Vi[i] before timestamping each event.
3. piggybacks Li when sending a message.
4. upon receiving a message with clock value t

• sets Li = max(t, Li)
• increments Li (as per point 2).

Vector Clocks
• Each event associated with a vector timestamp.
• Each process maintains vector of clocks Vi

• Vi[j] is the clock for process pj

• Algorithm: each process pi:
1. initializes local clock Vi[j] = 0
2. increments Vi[i] before timestamping each event.
3. piggybacks Vi when sending a message.
4. upon receiving a message with clock value t

• sets Li = max(t, Li)
• increments Li (as per point 2).

Vector Clocks
• Each event associated with a vector timestamp.
• Each process maintains vector of clocks Vi

• Vi[j] is the clock for process pj

• Algorithm: each process pi:
1. initializes local clock Vi[j] = 0
2. increments Vi[i] before timestamping each event.
3. piggybacks Vi when sending a message.
4. upon receiving a message with clock value t

• setsVi[j] = max(Vi[j], t[j]) for all j=1…n.
• increments Vi[i] (as per point 2).

Vector Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

Assign a vector timestamp to each event!

Vector Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

g

h

Assign a vector timestamp to each event!

Comparing Vector Timestamps
• Let V(e) = V and V(e’) = V’

• V= V’, iff V[i] = V’[i], for all i = 1, … , n
• V ≤	V’, iff V[i] ≤V’[i], for all i = 1, … , n
• V < V’, iff V ≤V’ &V ≠	V’

iff V ≤V’ & $ j such that (V[j] < V’[j])

• e → e’ iff V < V’
• (V < V’ implies e → e’) and (e → e’ implies V < V’)

• e || e’ iff (V ≮V’ and V’ ≮V)

Vector Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

Compare vector timestamps between e & f and e & d.

Vector Timestamps: Example

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

g

h

Compare vector timestamps between e & f and e & d.

Summary

• Time synchronization important for distributed systems
• Cristian’s algorithm
• Berkeley algorithm
• NTP

• Relative order of events enough for practical purposes
• Lamport’s logical clocks
• Vector clocks

• Next class: Global State and Snapshots

HW1 will be released tonight!

• We will release HW1 by tonight.

• Announcement and submission instructions will be made
available on Campuswire.

• Due on Feb 13, 11:59pm.

• Relevant material for the last1-2 questions will get covered
by next week.

