Distributed Systems

CS425/ECE428

01/29/2020

Logistics

* Slide policy:
* | ecture slides v
* By noon the day of the lecture.
* L ecture slides v2
* By 6pm on the day of the lecture.

* MPO: Please sign up for groups If you have not
already done so.

Today’s agenda

* Wrap up failure model and detection
* Chapter 2.4 (except 2.4.3), Chapter | 5.1

 Time and Clocks
* Chapter [4.1-14.3

Recap: What is a distributed system?

Independent processes that are connected by a network and
communicate by passing messages to achieve a common goal,
appearing as a single coherent system.

Recap from last class

* Relationship between processes
* Client-server and peer-to-peer

* Sources of uncertainty
e Communication time, clock drift rates

* Synchronous vs asynchronous models.

e Fallure model and detection.

Types of failure

* Omission: when a process or a channel fails to perform
actions that i1t i1s supposed to do.
* Process may crash.

How to detect a crashed process?

Periodic ping

heartbeats

@ @
ack
Periodic

e L

How to detect a crashed process?

Periodic ping

ack

Pings are sent every 1| seconds.
A, time elapsed after sending ping, and no ack, report crash.

If synchronous, A; = 2(max network delay)
If asynchronous, A; = k(max observed round trip time)

How to detect a crashed process?

Periodic
heartbeats

Heartbeats are sent every T seconds.
(T + A,) time elapsed since last heartbeat, report crash.

If synchronous, A, = max network delay — min network delay
If asynchronous, A, = k(observed delay)

How to detect a crashed process?

Periodic
heartbeats
q

(T + A,) time elapsed since last heartbeat.
t + min <
t+T

t+T+ max/

t

Correctness of failure detection

* Completeness
* bvery failed process is eventually detected.

* Accuracy
* Every detected failure corresponds to a crashed process
(no mistakes).

Correctness of failure detection

* Characterized by completeness and accuracy.

* Synchronous system
* Failure detection via ping-ack and heartbeat Is both
complete and accurate.

* Asynchronous system
* Our strategy for ping-ack and heartbeat is complete.
* Impossible to achieve both completeness and accuracy.
* Can we have an accurate but incomplete algorithm?
* Never report failure.

Metrics for failure detection

* \Worst case fallure detection time

Metrics for failure detection

* \Worst case fallure detection time

¢ Plng-ad(: T+A |~ A, where A is time taken for previous ping from p to reach g
T is the time period for pings,and A, is timeout value.

Worst case failure
detection time:
t+T +A, -t + A
=T+A-A

Q: What is worst case
value of A for a
synchronous system?
A: min network delay

Metrics for failure detection

* \Worst case fallure detection time

e Heartbeat: A + T + AZ where A is time taken for last heartbeat from g to reach p
T is the time period for heartbeats,and T + A, is the timeout.

t+A

E‘W):(

(t + A) + (T +4,)

Worst case failure detection time:
(t+A)+(T+A,) -t
=T+A,+A

Q: What is worst case value of 4 in
a synchronous system?
A: max network delay

Metrics for failure detection

* \Worst case fallure detection time

e Heartbeat: A + T + AZ where A is time taken for last heartbeat from g to reach p
T is the time period for heartbeats,and T + A, is the timeout.

Worst case failure detection time:

: X t
:‘W: (t+A)+(T+A,) -t
L =T+A+A

t+A

Q: What is worst case value of A in
an asynchronous system?

(t + A) + (T +4,)

Metrics for failure detection

* \Worst case fallure detection time

e Heartbeat: A + T + AZ where A is time taken for last heartbeat from g to reach p
T is the time period for heartbeats,and T + A, is the timeout.

Worst case failure detection time:
(t+A)+(T+A,) -t

T+AZL/HW§T rRre
2T+4,) : - (n-1)T Q:What is worst case value of A in
)LW?(an asynchronous system?
n(T+ A,) E Worstcase A=T +nA,
' Worst case detection time
(n+1)(T +4,) = 2T + (nt]) A,

earipedt \

Metrics for failure detection

* \Worst case fallure detection time

¢ Ping-aCk: T+A |~ A (where A is time taken for previous ping from p to reach q)
e Heartbeat: A + T + AZ (where A is time taken for last heartbeat from g to reach p)

Metrics for failure detection

* \Worst case fallure detection time

¢ Ping-aCk: T+A |~ A (where A is time taken for previous ping from p to reach q)
e Heartbeat: A + T + AZ (where A is time taken for last heartbeat from g to reach p)

* Bandwidth usage:
* Ping-ack: 2 messages every I units
* Heartbeat: | message every | units.

Metrics for failure detection

* \Worst case fallure detection time

¢ Ping-ad(: T+A |~ A (where A is time taken for previous ping from p to reach q)
e Heartbeat: A + T + AZ (where A is time taken for last heartbeat from g to reach p)

* Bandwidth usage:
* Ping-ack: 2 messages every I units
* Heartbeat: | message every | units.

Decreasing T decreases fallure detection time,
but Increases bandwidth usage.

Metrics for failure detection

* \Worst case fallure detection time

¢ Ping-ad(: T+A |~ A (where A is time taken for previous ping from p to reach q)
e Heartbeat: A + T + AZ (where A is time taken for last heartbeat from g to reach p)

* Bandwidth usage:
* Ping-ack: 2 messages every I units
* Heartbeat: | message every | units.

Increasing A, or A, increases accuracy but also
increases fallure detection time.

Types of failure

* Omission: when a process or a channel fails to perform
actions that i1t i1s supposed to do.
* Process may crash.
* Fail-stop: If other processes can certainly detect the crash.
* Communication omission: a message sent by process was
not recerved by another.

Communication Omission

process p Process ¢

\ Communication Channel /
Outgoing message buffer Incoming message buffer

* Channel omission: omitted by channel

* Send omission: process completes ‘'send’ operation, but
message does not reach its outgoing message buffer.

* Receive omission: message reaches the incoming
message buffer, but not received by the process.

Two Generals Problem

. . OO . .
attack?

RN AN

/ AN

Two Generals Problem

.OOQ Has my .

message

/‘\ reached?
/

NN
/S

\ At dawn. /

Two Generals Problem

('I' Has my (:>C>O"I'

confirmation

////\\\\ reached! ////\\\\
AN N\

=
7 \ /

\ confirm /

Two Generals Problem

®--c

Has my ack
reached?

\ ack “‘confirm”.

Two Generals Problem

Has my
message
reached?

\ At dawn. /

Keep sending the message until confirmation arrives.

Two Generals Problem

Has my
confirmation
reached?

\ confirm / .

Assume confirmation has reached in the absence of a
repeated message.

Still no guarantees! But may be good enough in practice.

Types of failure

* Omission: when a process or a channel fails to perform
actions that i1t i1s supposed to do.
* Process may crash.
* Fail-stop: if other processes can detect that the process
has crashed.
* Communication omission: a message sent by process was
not received by another.

Message drops (or omissions) can be
mitigated by network protocols.

Types of failure

* Omission: when a process or a channel fails to perform
actions that i1t i1s supposed to do, e.g. process crash and
message drops.

* Arbitrary (Byzantine) Failures: any type of error, e.g. a
process executing incorrectly, sending a wrong message, etc.

* Timing Failures: Timing guarantees are not met.
* Applicable only in synchronous systems.

How to detect a crashed process?

Periodic ping

ack

A, time elapsed after sending ping, and no ack.

If synchronous, A; = 2(max network delay)
f asynchronous, A; = k(max observed roundtrip time)

How to detect a crashed process?

Periodic
heartbeats

(T + A,) time elapsed since last heartbeat.

If synchronous, A, = max network delay — min network delay
If asynchronous, A, = k(max observed delay)

Extending heartbeats

* Looked at detecting failure between two processes.

* How do we extend to a system with multiple
processes!

Centralized heartbeating

Downside:
What if p. fails?

p;, Heartbeat Seq++

Ring heartbeating

p;, Heartbeat Seq++

P
HEN
S
(@7
P

Pi @ P«

X l Downside:
. Multiple failures
® Ring repair overhead

All-to-all heartbeats

eartbeat Seq++

Everyone can keep track of everyone.

Downside: Bandwidth.

Extending heartbeats

* Looked at detecting fallure between two processes!

* How do we extend to a system with multiple

processes!
* Centralized heartbeating: not complete.
* Ring heartbeating: not entirely complete.
* All-to-all: complete, but more bandwidth usage.

Failures

* [hree types
* omission, arbitrary, timing.

* Failure detection (detecting a crashed process):
* Send periodic ping-acks or heartbeats.
* Report crash if no response until a timeout.
* Timeout can be precisely computed for synchronous systems
and estimated for asynchronous.
* Metrics: completeness, accuracy, failure detection time, bandwidth.

* Fallure detection for a system with multiple processes:
* Centralized, ring, all-to-all
* Trade-off between completeness and bandwidth usage.

Today’s agenda

* Time and Clocks
* Chapter |4

Why are clocks useful?

* How long did it take my search request to reach Google!?
* Requires my computer’s clock to be synchronized with
Google's server.

* Use timestamps to order events in a distributed system.
* Requires the system clocks to be synchronized with one
another.

* At what day and time did Alice transfer money to Bob!
* Require accurate clocks (synchronized with a global
authority).

Clock Skew and Drift Rates

* Fach process has an internal clock.

* Clocks between processes on different computers differ:
* Clock skew: relative difference between two clock values.

* Clock drift rate: change in skew from a perfect reference clock per
unit time (measured by the reference clock).

* Depends on change in the frequency of oscillation of a crystal in the
hardware clock.

* Synchronous systems have bound on maximum drift rate.

Ordinary and Authoritative Clocks

* Ordinary quartz crystal clocks:
* Drift rate is about 10 seconds/second.
* Drift by | second every | 1.6 days.
* Skew of about 30minutes after 60 years.

* High precision atomic clocks:
* Drift rate is about 10-'3 seconds/second.
* Skew of about O.]8ms after 60 years.
* Used as standard for real time.
* Universal Coordinated Time (UTC) obtained from such clocks.

Two forms of synchronization

* External synchronization
* Synchronize time with an authoritative clock
* When accurate timestamps are required.

* Internal synchronization
* Synchronize time internally between all processes in a distributed
system.
* When internally comparable timestamps are required.

* |f all clocks In a system are externally synchronized, they are
also internally synchronized.

Synchronization Bound

* Synchronization bound (D) between two clocks A and B over
a real time interval |.

* |A(t) — B(t)| < D, for all tin the real time interval |.
* Skew(A, B) < D during the time interval |.

* A and B agree within a bound D.
e [f A Is authoritative, B Is accurate within a bound of D.

Q: If all clocks in a system are externally synchronized within a bound of D,
what is the bound on their skew relative to one another?

A:2D. So the clocks are internally synchronized within a bound of 2D.

Synchronization in synchronous systems

m_:VWhat is the time?

client , server
m:ltis T,

What time T, should client adjust its local clock to after receiving m, ?

Synchronization in synchronous systems

m_:VWhat is the time?

client , server
m:ltis T,

What time T, should client adjust its local clock to after receiving m, ?

et max and min be maximum and minimum network delay.

f T, = T, skew(client, server) < max. Provably the

If T. = (T, + max), skew(client, server) < (max — min) | 2 QZIU can

If T, = (T, + min), skew(client, server) < (max —min) —_~
it T, = (T, + (min + max)/2), skew(clientserver) < (max — min)/2

Synchronization in asynchronous systems

* Cristian Algorithm
* Berkeley Algorithm

 Network Time Protocol

Cristian Algorithm

m_:VWhat is the time?

client , server
m:ltis T,

What time T, should client adjust its local clock to after receiving m, ?

Client measures the round
trip time (T.ound)- Try deriving the worst case skew!

Tc = Ts T (Tround / 2)

Hint: client is assuming its one-way

skew < (T.qung/ 2) —min delay from serveris (T .4/2). How off
(min is minimum one way can it be?
network delay).

Next Class

* Wrap-up time synchronization:
* Cristian algorithm, Berkeley algorithm, N'TP

* Do we really need timestamps to reason about event

ordering!

* How do we determine which events happened before a
given event X!

