
Distributed Systems

CS425/ECE428

01/29/2020

Logistics

• Slide policy:
• Lecture slides v1

• By noon the day of the lecture.
• Lecture slides v2

• By 6pm on the day of the lecture.

• MP0: Please sign up for groups if you have not
already done so.

Today’s agenda

• Wrap up failure model and detection
• Chapter 2.4 (except 2.4.3), Chapter 15.1

• Time and Clocks
• Chapter 14.1-14.3

Recap: What is a distributed system?

Independent processes that are connected by a network and
communicate by passing messages to achieve a common goal,

appearing as a single coherent system.

Recap from last class

• Relationship between processes
• Client-server and peer-to-peer

• Sources of uncertainty
• Communication time, clock drift rates

• Synchronous vs asynchronous models.
• Failure model and detection.

Types of failure

• Omission: when a process or a channel fails to perform
actions that it is supposed to do.

• Process may crash.

How to detect a crashed process?

p q
Periodic ping

ack

p q
Periodic

heartbeats

How to detect a crashed process?

p q
Periodic ping

ack

Pings are sent every T seconds.
∆1 time elapsed after sending ping, and no ack, report crash.

If synchronous, ∆1 = 2(max network delay)
If asynchronous, ∆1 = k(max observed round trip time)

How to detect a crashed process?

Heartbeats are sent every T seconds.
(T + ∆2) time elapsed since last heartbeat, report crash.

If synchronous, ∆2 = max network delay – min network delay
If asynchronous, ∆2 = k(observed delay)

p q
Periodic

heartbeats

How to detect a crashed process?

(T + ∆2) time elapsed since last heartbeat.

p q
Periodic

heartbeats

t

t + min

t + T

t + T + max

Correctness of failure detection

• Completeness
• Every failed process is eventually detected.

• Accuracy
• Every detected failure corresponds to a crashed process

(no mistakes).

Correctness of failure detection

• Characterized by completeness and accuracy.

• Synchronous system
• Failure detection via ping-ack and heartbeat is both

complete and accurate.

• Asynchronous system
• Our strategy for ping-ack and heartbeat is complete.
• Impossible to achieve both completeness and accuracy.
• Can we have an accurate but incomplete algorithm?

• Never report failure.

Metrics for failure detection

• Worst case failure detection time
• 1
• Heartbeat: ∆ + T + ∆2

Metrics for failure detection

• Worst case failure detection time
• Ping-ack: T + ∆1- ∆, where ∆ is time taken for previous ping from p to reach q

T is the time period for pings, and ∆1 is timeout value.

• ∆ + T + ∆2

t + ∆

t + T

t

t + T +∆1

X

Worst case failure
detection time:
t + T +∆1 - t + ∆
= T	+	∆1- ∆	

Q: What is worst case
value of ∆	for a
synchronous system?
A: min network delay

Metrics for failure detection

• Worst case failure detection time
• Heartbeat: ∆ + T + ∆2 where ∆ is time taken for last heartbeat from q to reach p

T is the time period for heartbeats, and T + ∆2 is the timeout.

(t + ∆)	+	(T +∆2)

X t

t + ∆

Worst case failure detection time:
(t + ∆)	+	(T +∆2) - t
= T	+	∆2 +	∆	

Q: What is worst case value of ∆	in
a synchronous system?
A: max network delay

Metrics for failure detection

• Worst case failure detection time
• Heartbeat: ∆ + T + ∆2 where ∆ is time taken for last heartbeat from q to reach p

T is the time period for heartbeats, and T + ∆2 is the timeout.

(t + ∆)	+	(T +∆2)

X t

t + ∆

Worst case failure detection time:
(t + ∆)	+	(T +∆2) - t
= T	+	∆2 +	∆	

Q: What is worst case value of ∆	in
an asynchronous system?

Metrics for failure detection

• Worst case failure detection time
• Heartbeat: ∆ + T + ∆2 where ∆ is time taken for last heartbeat from q to reach p

T is the time period for heartbeats, and T + ∆2 is the timeout.

(n+1)(T +∆2)

0

T+ ∆2

Worst case failure detection time:
(t + ∆)	+	(T +∆2) - t
= T	+	∆2 +	∆	

Q: What is worst case value of ∆	in
an asynchronous system?

Worst case ∆	= T + n ∆2
Worst case detection time

= 2T + (n+1) ∆2

T

2(T+ ∆2)
(n-1)T

X

n(T+ ∆2)

…
..

Metrics for failure detection

• Worst case failure detection time
• Ping-ack: T + ∆1- ∆ (where ∆ is time taken for previous ping from p to reach q)

• Heartbeat: ∆ + T + ∆2 (where ∆ is time taken for last heartbeat from q to reach p)

Metrics for failure detection

• Worst case failure detection time
• Ping-ack: T + ∆1- ∆ (where ∆ is time taken for previous ping from p to reach q)

• Heartbeat: ∆ + T + ∆2 (where ∆ is time taken for last heartbeat from q to reach p)

• Bandwidth usage:
• Ping-ack: 2 messages every T units
• Heartbeat: 1 message every T units.

Metrics for failure detection

• Worst case failure detection time
• Ping-ack: T + ∆1- ∆ (where ∆ is time taken for previous ping from p to reach q)

• Heartbeat: ∆ + T + ∆2 (where ∆ is time taken for last heartbeat from q to reach p)

• Bandwidth usage:
• Ping-ack: 2 messages every T units
• Heartbeat: 1 message every T units.

Decreasing T decreases failure detection time,
but increases bandwidth usage.

Metrics for failure detection

• Worst case failure detection time
• Ping-ack: T + ∆1- ∆ (where ∆ is time taken for previous ping from p to reach q)

• Heartbeat: ∆ + T + ∆2 (where ∆ is time taken for last heartbeat from q to reach p)

• Bandwidth usage:
• Ping-ack: 2 messages every T units
• Heartbeat: 1 message every T units.

Increasing ∆1 or ∆2 increases accuracy but also
increases failure detection time.

Types of failure

• Omission: when a process or a channel fails to perform
actions that it is supposed to do.

• Process may crash.
• Fail-stop: if other processes can certainly detect the crash.
• Communication omission: a message sent by process was

not received by another.

Communication Omission

• Channel omission: omitted by channel
• Send omission: process completes ‘send’ operation, but

message does not reach its outgoing message buffer.
• Receive omission: message reaches the incoming

message buffer, but not received by the process.

process p process q

Communi cation channel

send

Outgoing message buffer Incoming message buffer

receivem

Outgoing message buffer Incoming message buffer
Communication Channel

Two Generals Problem

When to
attack?

X

Two Generals Problem

At dawn.

Has my
message
reached?

Two Generals Problem

confirm

Has my
confirmation

reached?

Two Generals Problem

ack “confirm”.

Has my ack
reached?

Two Generals Problem

At dawn.

Has my
message
reached?

Keep sending the message until confirmation arrives.

Two Generals Problem

confirm

Has my
confirmation

reached?

Assume confirmation has reached in the absence of a
repeated message.

Still no guarantees! But may be good enough in practice.

Types of failure

• Omission: when a process or a channel fails to perform
actions that it is supposed to do.

• Process may crash.
• Fail-stop: if other processes can detect that the process

has crashed.
• Communication omission: a message sent by process was

not received by another.

Message drops (or omissions) can be
mitigated by network protocols.

Types of failure

• Omission: when a process or a channel fails to perform
actions that it is supposed to do, e.g. process crash and
message drops.

• Arbitrary (Byzantine) Failures: any type of error, e.g. a
process executing incorrectly, sending a wrong message, etc.

• Timing Failures: Timing guarantees are not met.
• Applicable only in synchronous systems.

How to detect a crashed process?

p q
Periodic ping

ack

∆1 time elapsed after sending ping, and no ack.

If synchronous, ∆1 = 2(max network delay)
If asynchronous, ∆1 = k(max observed roundtrip time)

How to detect a crashed process?

(T + ∆2) time elapsed since last heartbeat.

If synchronous, ∆2 = max network delay – min network delay
If asynchronous, ∆2 = k(max observed delay)

p q
Periodic

heartbeats

Extending heartbeats

• Looked at detecting failure between two processes.

• How do we extend to a system with multiple
processes?

Centralized heartbeating

pj, Heartbeat Seq++

pi

Downside:

What if pi fails?

Ring heartbeating

pi, Heartbeat Seq++

pi

pj

Downside:

Multiple failures

pk

Ring repair overhead

All-to-all heartbeats

…

pj

pi

Everyone can keep track of everyone.
Downside: Bandwidth.

pj, Heartbeat Seq++

Extending heartbeats

• Looked at detecting failure between two processes?

• How do we extend to a system with multiple
processes?

• Centralized heartbeating: not complete.
• Ring heartbeating: not entirely complete.
• All-to-all: complete, but more bandwidth usage.

Failures

• Three types
• omission, arbitrary, timing.

• Failure detection (detecting a crashed process):
• Send periodic ping-acks or heartbeats.
• Report crash if no response until a timeout.
• Timeout can be precisely computed for synchronous systems

and estimated for asynchronous.
• Metrics: completeness, accuracy, failure detection time, bandwidth.
• Failure detection for a system with multiple processes:

• Centralized, ring, all-to-all
• Trade-off between completeness and bandwidth usage.

Today’s agenda

• Wrap up failure model and detection
• Chapter 2.4 (except 2.4.3), Chapter 15.1

• Time and Clocks
• Chapter 14

Why are clocks useful?

• How long did it take my search request to reach Google?
• Requires my computer’s clock to be synchronized with

Google’s server.

• Use timestamps to order events in a distributed system.
• Requires the system clocks to be synchronized with one

another.

• At what day and time did Alice transfer money to Bob?
• Require accurate clocks (synchronized with a global

authority).

Clock Skew and Drift Rates

• Each process has an internal clock.
• Clocks between processes on different computers differ :

• Clock skew: relative difference between two clock values.
• Clock drift rate: change in skew from a perfect reference clock per

unit time (measured by the reference clock).
• Depends on change in the frequency of oscillation of a crystal in the

hardware clock.

• Synchronous systems have bound on maximum drift rate.

Ordinary and Authoritative Clocks

• Ordinary quartz crystal clocks:
• Drift rate is about 10-6 seconds/second.
• Drift by 1 second every 11.6 days.
• Skew of about 30minutes after 60 years.

• High precision atomic clocks:
• Drift rate is about 10-13 seconds/second.
• Skew of about 0.18ms after 60 years.
• Used as standard for real time.
• Universal Coordinated Time (UTC) obtained from such clocks.

Two forms of synchronization

• External synchronization
• Synchronize time with an authoritative clock.
• When accurate timestamps are required.

• Internal synchronization
• Synchronize time internally between all processes in a distributed

system.
• When internally comparable timestamps are required.

• If all clocks in a system are externally synchronized, they are
also internally synchronized.

Synchronization Bound

• Synchronization bound (D) between two clocks A and B over
a real time interval I.

• |A(t) – B(t)| < D, for all t in the real time interval I.
• Skew(A, B) < D during the time interval I.

• A and B agree within a bound D.
• If A is authoritative, B is accurate within a bound of D.

Q: If all clocks in a system are externally synchronized within a bound of D,
what is the bound on their skew relative to one another?

A: 2D. So the clocks are internally synchronized within a bound of 2D.

Synchronization in synchronous systems

What time Tc should client adjust its local clock to after receiving ms ?

client server

mr: What is the time?

ms : It is Ts

Synchronization in synchronous systems

Let max and min be maximum and minimum network delay.
If Tc = Ts, skew(client, server) ≤	max.
If Tc = (Ts + max), skew(client, server) ≤	(max – min)
If Tc = (Ts + min), skew(client, server) ≤	(max – min)
If Tc = (Ts + (min + max)/2), skew(client,server) ≤	(max – min)/2

Provably the
best you can

do!

What time Tc should client adjust its local clock to after receiving ms ?

client server

mr: What is the time?

ms : It is Ts

Synchronization in asynchronous systems

• Cristian Algorithm

• Berkeley Algorithm

• Network Time Protocol

Cristian Algorithm

client server

mr: What is the time?

What time Tc should client adjust its local clock to after receiving ms ?

ms : It is Ts

Client measures the round
trip time (Tround).
Tc = Ts + (Tround / 2)

skew ≤	(Tround / 2) – min
(min is minimum one way
network delay).

Try deriving the worst case skew!

Hint: client is assuming its one-way
delay from server is (Tround/2). How off
can it be?

Next Class

• Wrap-up time synchronization:
• Cristian algorithm, Berkeley algorithm, NTP

• Do we really need timestamps to reason about event
ordering?

• How do we determine which events happened before a
given event X?

