Final Review



Grading Update

* HW5 and MP2 graded

* This leaves:

* HW6 (6%) + final (33%) for 3-credit

e HW6 (0-~4%) + MP3 (7% + 3% bonus) + final (25%) for 4-credit
* Participation grade (1%)

* Will be used to bump people to next grade

* Based on your activity in CampusWire

 Reminder:
* CR/NC means course does not affect GPA, but grade < C- means no credit
* If you keep a letter grade, anything >= D- is a pass



Final Logistics

Timed Exam: Wed, May 13, 8-11 a.m.

* Format similar to midterm 2
* Exam released to you at 8 a.m.
* Upload answer sheet to Gradescope by 11 a.m.
* Open book, but individual work
e Zoom room + Google doc for clarifications

* Topic coverage: 50% from MT1+MT2, 50% new material

e Exam structure similar to MT1/MT2
* Some multiple choice
* Some short answer / synthesis
* ~50% longer



Topic coverage (Part Ill, 50% of final)

* DHTs
* RPCs

e Distributed transactions

* Concurrency, isolation, and deadlocks
e Atomicity and 2PC

* Combining 2PC and Paxos; Spanner and linearizability
* Cloud computing and MapReduce
* Distributed data stores and Cassandra



Topic coverage (Parts | and I, 50% of final)

e System model and Failures * Leader election
* Failure Detection e Consensus
* Clock Synchronization * Formulation

. ) * Synchronous consensus
* Event ordering and Logical

Timestamps * Paxos
* Global Snapshot * FLP Theorem
* Multicast * Bitcoin

e Mutual Exclusion * Raft



Distributed Hash Tables / Chord

Goal: horizontal scaling to millions of peers and data items
 Consistent hashing of keys, node IDs into a large (212%-22°%) key space
* Neighbor table: successors and fingers
* Finger-based routing:

* O(log N) neighbors and O(log N) lookup steps
* Resilient structure to departing nodes / incorrect fingers

* Track multiple successors and replicated keys at succ’s/pred’s

e Stabilization to restore DHT structure



RPC / RMI

Goal: Execute functions / procedures / methods on remote system, and
implement remote objects

* Interface definition languages (

 External data representation (JSON, protobuf, etc.)
* Marshaling / unmarshaling arguments

 Dealing with failures (at least once, at most once, idempotence)

* Remote objects
* Proxy objects (client)
* Dispatcher and skeleton (server)
* Remote reference module



Transactions & Isolation/Concurrency

Goal: support high-level updates to data while maintaining useful
properties

* ACID properties (Atomicity, Consistency, Isolation, Durability)

* |solation
* Lost update problem
Inconsistent retrieval problem
Serial equivalence
Conflicts (R/W, W/W)
Conflicts follow tx ordering === serial equivalence



Concurrency Techniques

Goal: achieve isolation / serial equivalence of transactions

* Two-phase locking: acquire locks during tx, release during
commit/abort
* Exclusive or shared locks
* Lock promotion

* Timestamp ordering: ensure operations consistent with tx timestamp

* Don’t read data from newer tx’s
 Don’t overwrite data from newer tx’s
* Abort (or skip writes) if order not satisfied

* Optimistics vs. pessimistic concurrency



Deadlocks

Goal: Avoid or detect deadlocks * Deadlock avoidance: lock
ordering
* E.g., wait-die / wound-wait
* E.g., dependency lists in
timestamped concurrency

* Deadlock requirements:
* no preemption
* hold and wait

e circular wait
* Deadlock resolution

* Abort newer tx

* Deadlock detection
* timeout
* centralized
* edge chasing



Two-phase Commit

Goal: ensure atomic commit across distributed participants

* Problem: need unanimous agreement to commit
* not majority like Paxos / Raft

* First phase: precommit
* any participant who agrees to commit must be able to proceed
» Second phase: commit/abort

* Crash-recover semantics

* Use participant or coordinator log after recovery
 Sacrifice availability



Distributed, replicated txs

Goal: combine distributed tx’s (for horizontal scaling) with
replication (for availability / durability)

* Run distributed transactions w/ 2PL, 2PC

* Replace each participant / coordinator with replica group
* Use Paxos / Raft for replica consistency

* Expensive!



Spanner

Goal: make previous approach more efficient

* Maintain versioned / timestamped database
* Alog of each previous value of each object with tx timestamp
* Enables read at a past time
* Transaction timestamp is global time that occurred during tx commit
phase
* Needs time with known bound on error
 Commit wait to ensure property (can overlap with consensus protocols)
* External consistency

e Reads can be lock free



What is a cloud?

 Cloud = Lots of storage + compute cycles nearby

* Cloud services provide:
* managed clusters for distributed computing.
* managed distributed datastores.



Must deal with immense complexity!

* Fault-tolerance and failure-handling
* Replication and consensus

* Cluster scheduling

* How would a cloud user deal with such complexity?
* Powerful abstractions and frameworks
* Provide easy-to-use AP| to users.

* Deal with the complexity of distributed computing
under the hood.



MapReduce Architecture

* MapReduce programming abstraction:
 Easy to program distributed computing tasks.

* MapReduce programming abstraction offered by multiple
open-source application frameworks:

* Handle creation of “map” and “reduce” tasks.

* e.g. Hadoop: one of the earliest map-reduce
frameworks.

* e.qg. Spark: easier APl and performance optimizations.

» Application frameworks use resource managers.

e Deal with the hassle of distributed cluster
management.



MapReduce Overview

* Input: a set of key/value pairs

» User supplies two functions:
* map(k,v) =2 list(k1,v1)
* reduce(kl, list(vl)) =2 v2

* (k1,v1) is an intermediate key/value pair.
e Output is the set of (k1,v2) pairs.



MapReduce Execution

Map tasks Reduce tasks Output files
into DFS

l-\> I

II1

C N A

Blocks (A0 Servers Servers

from DFS Shuffle (grdﬁp by key and partition)
Barrier between map and reduce phases.

Resource Manager (assigns map and reduce tasks to servers)



Distributed Datastores

* NoSQL datastores:
* Similar to databased (RDBMS), but,
* lack schema and structure.
* simplified APIl; might not support ‘joins’.
* typically do support ACID semantics.



Distributed Datastores

 NoSQL datastores:

* Similar to databased (RDBMS), but,
* lack schema and structure.
* simplified APIl; might not support ‘joins’.



Design Requirements

* High performance, low cost, and scalability.

* Avoid single-point of failure
* Replication across multiple nodes.

* Consistency: reads return latest written value by any client (all
nodes see same data at any time).

* Different from the C of ACID properties for transaction
semantics!

* Availability: every request received by a non-failing node in the
system must result in a response (quickly).

* Follows from requirement for high performance.

 Partition-tolerance: the system continues to work in spite of
network partitions.



CAP Theorem

» Consistency: reads return latest written value by any
client (all nodes see same data at any time).

* Availability: every request received by a non-failing
node in the system must result in a response (quickly).

* Partition-tolerance: the system continues to work in
spite of network partitions.

* In a distributed system you can only guarantee at most
2 out of the above 3 properties.
* Proposed by Eric Brewer (UC Berkeley)
* Subsequently proved by Gilbert and Lynch (NUS and MIT)



CAP Tradeoff

 Starting point for NoSQL
Revolution

* A distributed storage system
can achieve at most two of C,
A, and P.

 Partition-tolerance important
for distributed datastores:

* choose between
consistency and
availability

Consistency

HBase, HyperTable,
BigTable, Spanner

Conventional
RDBMSs
(non-replicated)

Ind

Partition-tolerance Availability

Cassandra, RIAK,
Dynamo, Voldemort




