
Final Review

Grading Update

• HW5 and MP2 graded
• This leaves:

• HW6 (6%) + final (33%) for 3-credit
• HW6 (0-~4%) + MP3 (7% + 3% bonus) + final (25%) for 4-credit

• Participation grade (1%)
• Will be used to bump people to next grade
• Based on your activity in CampusWire

• Reminder:
• CR/NC means course does not affect GPA, but grade < C- means no credit
• If you keep a letter grade, anything >= D- is a pass

Final Logistics

Timed Exam: Wed, May 13, 8–11 a.m.
• Format similar to midterm 2

• Exam released to you at 8 a.m.
• Upload answer sheet to Gradescope by 11 a.m.
• Open book, but individual work
• Zoom room + Google doc for clarifications

• Topic coverage: 50% from MT1+MT2, 50% new material
• Exam structure similar to MT1/MT2

• Some multiple choice
• Some short answer / synthesis
• ~50% longer

Topic coverage (Part III, 50% of final)

• DHTs
• RPCs
• Distributed transactions

• Concurrency, isolation, and deadlocks
• Atomicity and 2PC

• Combining 2PC and Paxos; Spanner and linearizability
• Cloud computing and MapReduce
• Distributed data stores and Cassandra

Topic coverage (Parts I and II, 50% of final)

• System model and Failures
• Failure Detection
• Clock Synchronization
• Event ordering and Logical

Timestamps
• Global Snapshot
• Multicast
• Mutual Exclusion

• Leader election
• Consensus

• Formulation
• Synchronous consensus

• Paxos
• FLP Theorem
• Bitcoin
• Raft

Distributed Hash Tables / Chord

Goal: horizontal scaling to millions of peers and data items
• Consistent hashing of keys, node IDs into a large (2128–2256) key space
• Neighbor table: successors and fingers
• Finger-based routing:

• O(log N) neighbors and O(log N) lookup steps

• Resilient structure to departing nodes / incorrect fingers
• Track multiple successors and replicated keys at succ’s/pred’s

• Stabilization to restore DHT structure

RPC / RMI

Goal: Execute functions / procedures / methods on remote system, and
implement remote objects
• Interface definition languages (
• External data representation (JSON, protobuf, etc.)

• Marshaling / unmarshaling arguments
• Dealing with failures (at least once, at most once, idempotence)
• Remote objects

• Proxy objects (client)
• Dispatcher and skeleton (server)
• Remote reference module

Transactions & Isolation/Concurrency

Goal: support high-level updates to data while maintaining useful
properties
• ACID properties (Atomicity, Consistency, Isolation, Durability)
• Isolation

• Lost update problem
• Inconsistent retrieval problem
• Serial equivalence
• Conflicts (R/W, W/W)
• Conflicts follow tx ordering === serial equivalence

Concurrency Techniques

Goal: achieve isolation / serial equivalence of transactions
• Two-phase locking: acquire locks during tx, release during

commit/abort
• Exclusive or shared locks
• Lock promotion

• Timestamp ordering: ensure operations consistent with tx timestamp
• Don’t read data from newer tx’s
• Don’t overwrite data from newer tx’s
• Abort (or skip writes) if order not satisfied

• Optimistics vs. pessimistic concurrency

Deadlocks

Goal: Avoid or detect deadlocks
• Deadlock requirements:

• no preemption
• hold and wait
• circular wait

• Deadlock detection
• timeout
• centralized
• edge chasing

• Deadlock avoidance: lock
ordering
• E.g., wait-die / wound-wait
• E.g., dependency lists in

timestamped concurrency

• Deadlock resolution
• Abort newer tx

Two-phase Commit

Goal: ensure atomic commit across distributed participants
• Problem: need unanimous agreement to commit

• not majority like Paxos / Raft

• First phase: precommit
• any participant who agrees to commit must be able to proceed

• Second phase: commit/abort
• Crash-recover semantics

• Use participant or coordinator log after recovery
• Sacrifice availability

Distributed, replicated txs

Goal: combine distributed tx’s (for horizontal scaling) with
replication (for availability / durability)
• Run distributed transactions w/ 2PL, 2PC
• Replace each participant / coordinator with replica group

• Use Paxos / Raft for replica consistency

• Expensive!

Spanner

Goal: make previous approach more efficient
• Maintain versioned / timestamped database

• A log of each previous value of each object with tx timestamp
• Enables read at a past time

• Transaction timestamp is global time that occurred during tx commit
phase
• Needs time with known bound on error
• Commit wait to ensure property (can overlap with consensus protocols)
• External consistency

• Reads can be lock free

• Cloud = Lots of storage + compute cycles nearby

• Cloud services provide:
• managed clusters for distributed computing.
• managed distributed datastores.

What is a cloud?

Must deal with immense complexity!

• Fault-tolerance and failure-handling
• Replication and consensus
• Cluster scheduling

• How would a cloud user deal with such complexity?
• Powerful abstractions and frameworks
• Provide easy-to-use API to users.
• Deal with the complexity of distributed computing

under the hood.

MapReduce Architecture
• MapReduce programming abstraction:
• Easy to program distributed computing tasks.

• MapReduce programming abstraction offered by multiple
open-source application frameworks:
• Handle creation of “map” and “reduce” tasks.
• e.g. Hadoop: one of the earliest map-reduce

frameworks.
• e.g. Spark: easier API and performance optimizations.

• Application frameworks use resource managers.
• Deal with the hassle of distributed cluster

management.
• e.g. Kubernetes, YARN, Mesos, etc.

MapReduce Overview

• Input: a set of key/value pairs
• User supplies two functions:

• map(k,v) à list(k1,v1)
• reduce(k1, list(v1)) à v2

• (k1,v1) is an intermediate key/value pair.
• Output is the set of (k1,v2) pairs.

1
2
3
4
5
6
7

Blocks
from DFS

Servers

Resource Manager (assigns map and reduce tasks to servers)

Map tasks

I

II

III

Output files
into DFS

A

B

C
Servers

A

B

C

Shuffle (group by key and partition)
Barrier between map and reduce phases.

Reduce tasks

MapReduce Execution

(k1, v1)

(k1, v2)

(k2, v3)

(k3, v4)

(k4, v5)

(k4, v6)

(k2, v6)

(k1’, v1’)

(k1’, v2’) (k1’, v3’)

(k2’, v4’)

(k2’, v5’)
(k2’, v6’)

(k3’, v7’)

(k3’, v8’)

(k3’, v9’)

Distributed Datastores

• NoSQL datastores:
• Similar to databased (RDBMS), but,

• lack schema and structure.
• simplified API; might not support ‘joins’.
• typically do support ACID semantics.

Distributed Datastores

• NoSQL datastores:
• Similar to databased (RDBMS), but,

• lack schema and structure.
• simplified API; might not support ‘joins’.

Design Requirements

• High performance, low cost, and scalability.
• Avoid single-point of failure

• Replication across multiple nodes.

• Consistency: reads return latest written value by any client (all
nodes see same data at any time).
• Different from the C of ACID properties for transaction

semantics!
• Availability: every request received by a non-failing node in the

system must result in a response (quickly).
• Follows from requirement for high performance.

• Partition-tolerance: the system continues to work in spite of
network partitions.

CAP Theorem
• Consistency: reads return latest written value by any

client (all nodes see same data at any time).
• Availability: every request received by a non-failing

node in the system must result in a response (quickly).
• Partition-tolerance: the system continues to work in

spite of network partitions.
• In a distributed system you can only guarantee at most

2 out of the above 3 properties.
• Proposed by Eric Brewer (UC Berkeley)
• Subsequently proved by Gilbert and Lynch (NUS and MIT)

CAP Tradeoff

• Starting point for NoSQL
Revolution

• A distributed storage system
can achieve at most two of C,
A, and P.

• Partition-tolerance important
for distributed datastores:
• choose between

consistency and
availability

Consistency

Partition-tolerance Availability

Conventional
RDBMSs
(non-replicated)

Cassandra, RIAK,
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner

