
Final Review



Grading Update

• HW5 and MP2 graded
• This leaves:

• HW6 (6%) + final (33%) for 3-credit
• HW6 (0-~4%) + MP3 (7% + 3% bonus) + final (25%) for 4-credit

• Participation grade (1%)
• Will be used to bump people to next grade
• Based on your activity in CampusWire

• Reminder:
• CR/NC means course does not affect GPA, but grade < C- means no credit
• If you keep a letter grade, anything >= D- is a pass



Final Logistics

Timed Exam: Wed, May 13, 8–11 a.m.
• Format similar to midterm 2

• Exam released to you at 8 a.m.
• Upload answer sheet to Gradescope by 11 a.m.
• Open book, but individual work
• Zoom room + Google doc for clarifications

• Topic coverage: 50% from MT1+MT2, 50% new material
• Exam structure similar to MT1/MT2

• Some multiple choice
• Some short answer / synthesis
• ~50% longer



Topic coverage (Part III, 50% of final)

• DHTs
• RPCs
• Distributed transactions

• Concurrency, isolation, and deadlocks
• Atomicity and 2PC

• Combining 2PC and Paxos; Spanner and linearizability
• Cloud computing and MapReduce
• Distributed data stores and Cassandra



Topic coverage (Parts I and II, 50% of final)

• System model and Failures
• Failure Detection
• Clock Synchronization
• Event ordering and Logical 

Timestamps 
• Global Snapshot 
• Multicast
• Mutual Exclusion 

• Leader election
• Consensus

• Formulation
• Synchronous consensus

• Paxos
• FLP Theorem
• Bitcoin
• Raft



Distributed Hash Tables / Chord

Goal: horizontal scaling to millions of peers and data items
• Consistent hashing of keys, node IDs into a large (2128–2256) key space
• Neighbor table: successors and fingers
• Finger-based routing: 

• O(log N) neighbors and O(log N) lookup steps

• Resilient structure to departing nodes / incorrect fingers
• Track multiple successors and replicated keys at succ’s/pred’s

• Stabilization to restore DHT structure



RPC / RMI

Goal: Execute functions / procedures / methods on remote system, and 
implement remote objects
• Interface definition languages (
• External data representation (JSON, protobuf, etc.)

• Marshaling / unmarshaling arguments
• Dealing with failures (at least once, at most once, idempotence)
• Remote objects

• Proxy objects (client)
• Dispatcher and skeleton (server)
• Remote reference module



Transactions & Isolation/Concurrency

Goal: support high-level updates to data while maintaining useful 
properties
• ACID properties (Atomicity, Consistency, Isolation, Durability)
• Isolation

• Lost update problem
• Inconsistent retrieval problem
• Serial equivalence
• Conflicts (R/W, W/W)
• Conflicts follow tx ordering === serial equivalence



Concurrency Techniques

Goal: achieve isolation / serial equivalence of transactions
• Two-phase locking: acquire locks during tx, release during

commit/abort
• Exclusive or shared locks
• Lock promotion

• Timestamp ordering: ensure operations consistent with tx timestamp
• Don’t read data from newer tx’s
• Don’t overwrite data from newer tx’s
• Abort (or skip writes) if order not satisfied

• Optimistics vs. pessimistic concurrency



Deadlocks

Goal: Avoid or detect deadlocks
• Deadlock requirements:

• no preemption
• hold and wait
• circular wait

• Deadlock detection
• timeout
• centralized
• edge chasing

• Deadlock avoidance: lock
ordering
• E.g., wait-die / wound-wait
• E.g., dependency lists in

timestamped concurrency

• Deadlock resolution
• Abort newer tx



Two-phase Commit

Goal: ensure atomic commit across distributed participants
• Problem: need unanimous agreement to commit 

• not majority like Paxos / Raft

• First phase: precommit
• any participant who agrees to commit must be able to proceed

• Second phase: commit/abort
• Crash-recover semantics

• Use participant or coordinator log after recovery
• Sacrifice availability



Distributed, replicated txs

Goal: combine distributed tx’s (for horizontal scaling) with 
replication (for availability / durability)
• Run distributed transactions w/ 2PL, 2PC
• Replace each participant / coordinator with replica group

• Use Paxos / Raft for replica consistency

• Expensive!



Spanner

Goal: make previous approach more efficient
• Maintain versioned / timestamped database

• A log of each previous value of each object with tx timestamp
• Enables read at a past time

• Transaction timestamp is global time that occurred during tx commit 
phase
• Needs time with known bound on error
• Commit wait to ensure property (can overlap with consensus protocols)
• External consistency

• Reads can be lock free 



• Cloud = Lots of storage + compute cycles nearby

• Cloud services provide:
• managed clusters for distributed computing.
• managed distributed datastores. 

What is a cloud?



Must deal with immense complexity!

• Fault-tolerance and failure-handling 
• Replication and consensus 
• Cluster scheduling

• How would a cloud user deal with such complexity? 
• Powerful abstractions and frameworks
• Provide easy-to-use API to users.
• Deal with the complexity of distributed computing 

under the hood. 



MapReduce Architecture
• MapReduce programming abstraction: 
• Easy to program distributed computing tasks. 

• MapReduce programming abstraction offered by multiple 
open-source application frameworks: 
• Handle creation of “map” and “reduce” tasks.
• e.g. Hadoop: one of the earliest map-reduce 

frameworks. 
• e.g. Spark: easier API and performance optimizations.

• Application frameworks use resource managers.
• Deal with the hassle of distributed cluster 

management.
• e.g. Kubernetes, YARN, Mesos, etc. 



MapReduce Overview

• Input: a set of key/value pairs
• User supplies two functions:

• map(k,v) à list(k1,v1)
• reduce(k1, list(v1)) à v2

• (k1,v1) is an intermediate key/value pair.
• Output is the set of (k1,v2) pairs.
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Distributed Datastores

• NoSQL datastores:
• Similar to databased (RDBMS), but,

• lack schema and structure. 
• simplified API; might not support ‘joins’. 
• typically do support ACID semantics. 
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Design Requirements

• High performance, low cost, and scalability.
• Avoid single-point of failure 

• Replication across multiple nodes. 

• Consistency: reads return latest written value by any client (all 
nodes see same data at any time). 
• Different from the C of ACID properties for transaction 

semantics!
• Availability: every request received by a non-failing node in the 

system must result in a response (quickly).  
• Follows from requirement for high performance.

• Partition-tolerance: the system continues to work in spite of 
network partitions.



CAP Theorem
• Consistency: reads return latest written value by any 

client (all nodes see same data at any time). 
• Availability: every request received by a non-failing 

node in the system must result in a response (quickly).  
• Partition-tolerance: the system continues to work in 

spite of network partitions.
• In a distributed system you can only guarantee at most 

2 out of the above 3 properties. 
• Proposed by Eric Brewer (UC Berkeley)
• Subsequently proved by Gilbert and Lynch (NUS and MIT)



CAP Tradeoff

• Starting point for NoSQL
Revolution

• A distributed storage system 
can achieve at most two of C, 
A, and P.

• Partition-tolerance important 
for distributed datastores:
• choose between 

consistency and 
availability

Consistency

Partition-tolerance Availability

Conventional
RDBMSs 
(non-replicated)

Cassandra, RIAK, 
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner


