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Today’s agenda

• Distributed key-value stores
• Intro to key-value stores 
• Design requirements and CAP Theorem
• Case study: Cassandra

• Acknowledgements: Prof. Indy Gupta



Recap

• Cloud provides distributed computing and storage 
infrastructure as a service.

• Running a distributed job on the cloud cluster can be very 
complex:

• Must deal with parallelization, scheduling, fault-tolerance, etc. 

• MapReduce is a powerful abstraction to hide this complexity.
• User programming via easy-to-use API.
• Distributed computing complexity handled by underlying 

frameworks and resource managers.



Distributed datastores

• Distributed datastores
• Service for managing distributed storage. 

• Distributed NoSQL key-value stores
• BigTable by Google
• HBase open-sourced by Yahoo and used by Hadoop.
• DynamoDB by Amazon
• Cassandra by Facebook
• Voldemort by LinkedIn
• MongoDB,
• …

• Spanner is not a NoSQL datastore. It’s more like a distributed relational 
database.  



The Key-value Abstraction

• (Business) Key àValue
• (twitter.com) tweet id à information about tweet
• (amazon.com) item number à information about it
• (kayak.com) Flight number à information about flight, 

e.g., availability
• (yourbank.com) Account number à information 

about it



The Key-value Abstraction (2)

• It’s a dictionary data-structure.
• Insert, lookup, and delete by key
• E.g., hash table, binary tree

• But distributed.
• Sound familiar? 

• Remember Distributed Hash tables (DHT) in P2P systems 
(e.g. Chord)?

• Key-value stores reuse many techniques from DHTs.



Isn’t that just a database? 

• Yes, sort of.

• Relational Database Management Systems (RDBMSs) 
have been around for ages

• e.g. MySQL is the most popular among them
• Data stored in structured tables based on a Schema

• Each row (data item) in a table has a primary key that is 
unique within that table.

• Queried using SQL (Structured Query Language).
• Supports joins.



Relational Database Example

Example SQL queries 
1. SELECT zipcode

FROM users 
WHERE name = “Bob”

2.    SELECT url
FROM blog
WHERE id = 3

3. SELECT users.zipcode, 
blog.num_posts

FROM users JOIN blog
ON users.blog_url = blog.url

user_id name	 zipcode blog_url blog_id

101 Alice			 12345			 alice.net 1

422	 Charlie	 45783		 charlie.com 3

555	 Bob					 99910		 bob.blogspot.com 2

users table

Primary keys

id url last_updated num_posts

1 alice.net 5/2/14 332

2 bob.blogspot.com 4/2/13 10003

3 charlie.com 6/15/14 7

blog table

Foreign keys



Mismatch with today’s workloads 

• Data: Large and unstructured
• Lots of random reads and writes
• Sometimes write-heavy
• Foreign keys rarely needed
• Joins infrequent



Key-value/NoSQL Data Model

• NoSQL = “Not Only SQL”
• Necessary API operations: get(key) and put(key, value)

• And some extended operations, e.g., “CQL” in Cassandra key-
value store

• Tables
• Like RDBMS tables, but … 
• May be unstructured: May not have schemas 

• Some columns may be missing from some rows
• Don’t always support joins or have foreign keys
• Can have index tables, just like RDBMSs

1
0



Key-value/NoSQL Data Model 

• Unstructured
• No schema imposed
• Columns Missing 

from some Rows
• No foreign keys, 

joins may not be 
supported

user_id name	 zipcode blog_url

101 Alice			 12345			 alice.net

422	 Charlie	 charlie.com

555	 99910		 bob.blogspot.com

users table

id url last_updated num_posts

1 alice.net 5/2/14 332

2 bob.blogspot.com 10003

3 charlie.com 6/15/14

blog table

Key
Value

Key

Value



How to design a distributed 
key-value datastore? 



Design Requirements

• High performance, low cost, and scalability.
• Speed (high throughput and low latency for read/write) 
• Low TCO (total cost of operation) 
• Fewer system administrators
• Incremental scalability

• Scale out: add more machines.
• Scale up: upgrade to powerful machines.
• Cheaper to scale out than to scale up.



Design Requirements
• High performance, low cost, and scalability.
• Avoid single-point of failure 

• Replication across multiple nodes. 
• Consistency: reads return latest written value by any client 

(all nodes see same data at any time). 
• Different from the C of ACID properties for transaction 

semantics!

• Availability: every request received by a non-failing node in 
the system must result in a response (quickly).  

• Follows from requirement for high performance.
• Partition-tolerance: the system continues to work in spite 

of network partitions.



CAP Theorem

• Consistency: reads return latest written value by any 
client (all nodes see same data at any time). 

• Availability: every request received by a non-failing node 
in the system must result in a response (quickly).  

• Partition-tolerance: the system continues to work in spite 
of network partitions.

• In a distributed system you can only guarantee at most 
2 out of the above 3 properties. 

• Proposed by Eric Brewer (UC Berkeley)
• Subsequently proved by Gilbert and Lynch (NUS and MIT)



CAP Theorem

N1 N2

• Data replicated across both N1 and N2. 
• If network is partitioned, N1 can no longer talk to N2.
• Consistency + availability require N1 and N2 must talk.

• no partition-tolerance. 
• Partition-tolerance + consistency: 

• only respond to requests received at N1 (no availability).
• Partition-tolerance + availability: 

• write at N1 will not be captured by a read at N2 (no consistency).



CAP Tradeoff

• Starting point for NoSQL
Revolution

• A distributed storage 
system can achieve at 
most two of C, A, and P.

• When partition-tolerance 
is important, you have to 
choose between 
consistency and availability

Consistency

Partition-tolerance Availability

Conventional
RDBMSs 
(non-replicated)

Cassandra, RIAK, 
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner



Case Study: Cassandra



Cassandra
• A distributed key-value store.
• Intended to run in a datacenter (and also across DCs).
• Originally designed at Facebook.
• Open-sourced later, today an Apache project.
• Some of the companies that use Cassandra in their 

production clusters.
• IBM, Adobe, HP, eBay, Ericsson, Symantec
• Twitter, Spotify
• PBS Kids
• Netflix: uses Cassandra to keep track of your current position in 

the video you’re watching



Data Partitioning: Key to Server Mapping

• How do you decide which server(s) a key-value resides on?
Cassandra uses a ring-based DHT but without finger or routing tables.

N80

0
Say m=7

N32

N45

Backup replicas for
key K13

N112

N96

N16

Read/write K13

Primary replica for
key K13

CoordinatorClient

One ring per DC



Partitioner
• Component responsible for key to server mapping (hash function). 

• Two types:
• Chord-like hash partitioning

• Murmer3Partitioner (default): uses murmer3 hash function.
• RandomPartitioner: uses MD5 hash function.

• ByteOrderedPartitioner: Assigns ranges of keys to servers. 
• Easier for range queries (e.g., get me all twitter users starting with [a-b])

• Determines the primary replica for a key. 



Replication Policies
Two options for replication strategy:
1. SimpleStrategy: 

• First replica placed based on the partitioner.
• Remaining replicas clockwise in relation to the primary replica. 

2.NetworkTopologyStrategy: for multi-DC deployments
• Two or three replicas per DC.
• Per DC

• First replica placed according to Partitioner.
• Then go clockwise around ring until you hit a different rack.



Writes 
• Need to be lock-free and fast (no reads or disk seeks).

• Client sends write to one coordinator node in Cassandra cluster. 
• Coordinator may be per-key, or per-client, or per-query.

• Coordinator uses Partitioner to send query to all replica nodes 
responsible for key.

• When X replicas respond, coordinator returns an 
acknowledgement to the client

• X = any one, majority, all….(consistency spectrum)
• More details later!



Writes: Hinted Handoff

• Always writable: Hinted Handoff mechanism
• If any replica is down, the coordinator writes to all other 

replicas, and keeps the write locally until down replica 
comes back up.

• When all replicas are down, the Coordinator (front end) 
buffers writes (for up to a few hours). 



Writes at a replica node
On receiving a write
1. Log it in disk commit log (for failure recovery)
2. Make changes to appropriate memtables

• Memtable = In-memory representation of multiple key-value pairs
• Cache that can be searched by key
• Write-back cache as opposed to write-through

3. Later, when memtable is full or old, flush to disk
• Data File: An SSTable (Sorted String Table) – list of key-value 

pairs, sorted by key
• Index file: An SSTable of (key, position in data sstable) pairs
• And a Bloom filter (for efficient search) – next slide.



Bloom Filter
• Compact way of representing a set of items.
• Checking for existence in set is cheap.
• Some probability of false positives: an item not in set may check true as 

being in set.
• Never false negatives.

Large Bit Map
0
1
2
3

6
9

127

111

Key-K
Hash1

Hash2

Hashm

On insert, set all hashed bits.

On check-if-present, 
return true if all hashed bits set.
• False positives

False positive rate low
• m=4 hash functions
• 100 items
• 3200 bits
• FP rate = 0.02%

.

.



Compaction

• Data updates accumulate over time and over 
multiple SSTables. 

• Need to be compacted.
• The process of compaction merges SSTables, i.e., by 

merging updates for a key.
• Run periodically and locally at each server.



Deletes

Delete: don’t delete item right away
• Write a tombstone for the key.
• Eventually, when compaction encounters tombstone it will 

delete item



Reads 
• Coordinator contacts X replicas (e.g., in same rack)

• Coordinator sends read to replicas that have responded quickest in 
past.

• When X replicas respond, coordinator returns the latest-
timestamped value from among those X.

• X = based on consistency spectrum (more later). 
• Coordinator also fetches value from other replicas

• Checks consistency in the background, initiating a read repair if any 
two values are different.

• This mechanism seeks to eventually bring all replicas up to date.
• At a replica

• Read looks at Memtables first, and then SSTables.
• A row may be split across multiple SSTables => reads need to 

touch multiple SSTables => reads slower than writes (but still fast).



Cross-DC coordination

• Replicas may span multiple datacenters.
• Per-DC coordinator elected to coordinate with other 

DCs.
• Election done via Zookeeper which runs a Bully 

algorithm variant.



Membership

• Any server in cluster could be the leader.
• So every server needs to maintain a list of all the 

other servers that are currently in the cluster.
• List needs to be updated automatically as servers 

join, leave, and fail.



Cluster Membership

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3

•Nodes periodically gossip their membership list

•On receipt, the local membership list is updated, as shown

•If any heartbeat older than Tfail, node is marked as failed

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address
Heartbeat Counter

Time (local)

Cassandra uses gossip-based cluster membership

(old)

(updated)



Consistency Spectrum

Strong Eventual
More consistency

Faster reads and writes



Eventual Consistency

• Cassandra offers Eventual Consistency
• If writes to a key stop, all replicas of key will converge.
• Originally from Amazon’s Dynamo and LinkedIn’s 

Voldemort systems

Strong 
(e.g., Sequential)Eventual

More consistency

Faster reads and writes



Consistency levels: value of X

• Cassandra has consistency levels.
• Client is allowed to choose a consistency level for 

each operation (read/write)
• ANY: any server (may not be replica)

• Fastest: coordinator caches write and replies quickly to client
• ALL: all replicas

• Ensures strong consistency, but slowest
• ONE: at least one replica

• Faster than ALL, but cannot tolerate a failure
• QUORUM: quorum across all replicas in all datacenters 

(DCs)



Quorums?
In a nutshell:
• Quorum = (typically) majority 
• Any two quorums intersect

• Client 1 does a write in red 
quorum 

• Then client 2 does read in blue 
quorum

• At least one server in blue quorum 
returns latest write

• Quorums faster than ALL, but still 
ensure strong consistency

• Several key-value/NoSQL stores (e.g., 
Riak and Cassandra) use quorums.

Five replicas of a key-value pair

A second 
quorumA quorum

A server



Read Quorums

• Reads
• Client specifies value of R (≤ N = total number of replicas 

of that key). 
• R = read consistency level.
• Coordinator waits for R replicas to respond before 

sending result to client. 
• In background, coordinator checks for consistency of 

remaining (N-R) replicas, and initiates read repair if 
needed.



Write Quorums

• Client specifies W (≤ N)
• W = write consistency level.
• Client writes new value to W replicas and returns. 
• Two flavors:

• Coordinator blocks until quorum is reached (default).
• Asynchronous: Just write and return.

• Source of inconsistency. 



Quorums in Detail (Contd.)
• R = read replica count, W = write replica count
• Necessary conditions for consistency:

1. W+R > N 
• Write and read intersect at a replica. Read returns latest write. 

2. W > N/2   
• Two conflicting writes on a data item don’t occur at the same time. 

• Select values based on application 
• (W=N, R=1): 

• great for read-heavy workloads
• (W=1, R=N): 

• great for write-heavy workloads with no conflicting writes.
• (W=N/2+1, R=N/2+1): 

• great for write-heavy workloads with potential for write conflicts. 
• (W=1, R=1): 

• very few writes and reads / high availability requirement.



Cassandra Consistency Levels

• Client is allowed to choose a consistency level for each 
operation (read/write)

• ANY: any server (may not be replica)
• Fastest: coordinator may cache write and reply quickly to client

• ALL: all replicas
• Slowest, but ensures strong consistency

• ONE: at least one replica
• Faster than ALL, and ensures durability without failures

• QUORUM: quorum across all replicas in all datacenters (DCs)
• Global consistency, but still fast

• LOCAL_QUORUM: quorum in coordinator’s DC
• Faster: only waits for quorum in first DC client contacts

• EACH_QUORUM: quorum in every DC
• Lets each DC do its own quorum: supports hierarchical replies



Eventual Consistency 
• Sources of inconsistency:

• Quorum condition not satisfied R + W < N.
• R and W are chosen as such.
• when write returns before W replicas respond. 

• Sloppy quorum: when value stored elsewhere if intended replica is down, 
and later moved to the replica when it is up again.  

• When local quorum is chosen instead of global quorum.
• Hinted-handoff and read repair help in achieving eventual consistency. 

• If all writes stop (to a key), then all its values (replicas) will converge 
eventually.

• May still return stale values to clients (e.g., if many back-to-back writes).
• But works well when there a few periods of low writes – system converges 

quickly.



Cassandra Vs. RDBMS

• MySQL is one of the most popular (and has been for 
a while)

• On > 50 GB data
• MySQL 

• Writes 300 ms avg
• Reads 350 ms avg

• Cassandra 
• Writes 0.12 ms avg
• Reads 15 ms avg

• Orders of magnitude faster.



Other similar NoSQL stores

• Amazon’s DynamoDB
• Cassandra’s data partitioning, replication, and eventual consistency

strategies inspired from Dynamo. 
• Uses sloppy quorum as the default mechanism for eventual 

consistency with availability. 
• Uses vector clocks to capture causality between different versions 

of an object.  
• Dynamo: Amazon’s Highly Available Key-value Store, SOSP’2007.

• LinkedIn’s Voldemort
• Inspired from DynamoDB. 

• …..



Summary

• CAP theorem: cannot only achieve 2 out of 3 among 
consistency, availability, and partition-tolerance.

• Partition-tolerance is required in distributed datastores.
• Choose between consistency and availability. 

• Many modern distributed NoSQL key-value stores (e.g. 
Cassandra) choose availability, providing only eventual 
consistency. 


