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Transactions so far
Objects distributed / partitioned among different servers

◦ For load balancing (sharding)
◦ For separation of concerns  / administration

Isolation enforced using two-phase locking (2PL)
◦ Each server maintains locks on own objects
◦ Deadlocks detected using e.g., edge-chasing

Atomic commit using 2PC
◦ Prepare to commit ensures durability
◦ Recover from coordinator and participant crashes



Dealing with Failures
Node failure

◦ Objects unavailable until recovery
◦ 2PC “stuck” after coordinator failure

But! Node failure is common 

Drive failures => no recovery!



Replication
Objects distributed among 1000’s cluster nodes for load-balancing (sharding)

Objects replicated among a handful of nodes for availability / durability
◦ Replication across data centers, too

Two-level operation:
◦ Use transactions, coordinators, 2PC per object
◦ Use Paxos / Raft among object replicas

Note: can be expensive!
◦ Coordinator sends Prepare message to leaders of each replica group
◦ Each leader uses Paxos / Raft to commit the Prepare to the group logs
◦ Once commit succeeds, reply to coordinator
◦ Coordinator uses Paxos / Raft to commit decision to its group log



Example transaction
read A -> acquire read lock on A

read B -> acquire read lock on B

write A -> promote A’s lock to write lock

commit -> perform 2PC
◦ Coordinator -> A, B: prepare
◦ A, B -> OK
◦ Coordinator -> A, B: commit



Read transactions
Read transactions often access many data items

◦ E.g., Facebook ”news feed”
◦ E.g., Amazon front page
◦ E.g., balances across all accounts

Read transactions still need (read) locks (Why?)

Acquiring locks requires consensus (Why?)

Locks prevent write transactions from moving forward



Linearizability
Serial equivalence:

◦ Total effect on system is equivalent to a run that is serial and consistent with each client’s order

Linearizability
◦ Total effect on system is equivalent to a run that is serial and consistent with actual order of events

E.g., buying a movie
◦ Client makes RPC to bank transfers $3.99 to Amazon account
◦ Client requests video from Amazon
◦ Amazon makes RPC to bank, does not see transfer, rejects request!



Spanner: Google’s
Globally-Distributed Database

Wilson Hsieh 
representing a host of authors
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What is Spanner?

• Distributed multiversion database
• General-purpose transactions (ACID)
• SQL query language
• Schematized tables
• Semi-relational data model

• Running in production
• Storage for Google’s ad data
• Replaced a sharded MySQL database

OSDI 2012 9



Example: Social Network
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Overview

• Feature: Lock-free distributed read transactions
• Property: External consistency of distributed 

transactions
– First system at global scale

• Implementation: Integration of concurrency 
control, replication, and 2PC
– Correctness and performance

• Enabling technology: TrueTime
– Interval-based global time
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Read Transactions

• Generate a page of friends’ recent posts
– Consistent view of friend list and their posts
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Why consistency matters
1. Remove untrustworthy person X as friend
2. Post P: “My government is repressive…”
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Version Management

• Transactions that write use strict 2PL
– Each transaction T is assigned a timestamp s
– Data written by T is timestamped with s
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Synchronizing Snapshots

==
External Consistency:

Commit order respects global wall-time order
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==
Timestamp order respects global wall-time order

given
timestamp order == commit order

Global wall-clock time



Timestamps, Global Clock

• Strict two-phase locking for write transactions
• Assign timestamp while locks are held

T

Pick s = now()

Acquired locks Release locks
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Timestamp Invariants
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• Timestamp order == commit order

• Timestamp order respects global wall-time order 
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T1



TrueTime

• “Global wall-clock time” with bounded 
uncertainty

time

earliest latest

TT.now()

2*ε
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Timestamps and TrueTime

T

Pick s = TT.now().latest

Acquired locks Release locks

Wait until TT.now().earliest > ss
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average ε

Commit wait

average ε
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Commit Wait and Replication
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T

Acquired locks Release locks

Start consensus Notify slaves

Commit wait donePick s
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Achieve consensus



Commit Wait and 2-Phase Commit

OSDI 2012

TC

Acquired locks Release locks

TP1

Acquired locks Release locks

TP2

Acquired locks Release locks

Notify participants of s

Commit wait doneCompute s for each
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Example
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What Have We Covered?

• Lock-free read transactions across datacenters
• External consistency
• Timestamp assignment
• TrueTime
– Uncertainty in time can be waited out
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What Haven’t We Covered?

• How to read at the present time
• Atomic schema changes
–Mostly non-blocking
– Commit in the future

• Non-blocking reads in the past
– At any sufficiently up-to-date replica
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TrueTime Architecture

Datacenter 1 Datacenter n…Datacenter 2
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Client
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GPS 
timemaster

Compute reference [earliest, latest] = now ± ε



TrueTime implementation

time

ε

0sec 30sec 60sec 90sec

+6ms

now = reference now + local-clock offset
ε = reference ε + worst-case local-clock drift

reference
uncertainty
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200 μs/sec



What If a Clock Goes Rogue? 

• Timestamp assignment would violate external consistency
• Empirically unlikely based on 1 year of data
– Bad CPUs 6 times more likely than bad clocks
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Network-Induced Uncertainty
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Conclusions

• Reify clock uncertainty in time APIs
– Known unknowns are better than unknown 

unknowns
– Rethink algorithms to make use of uncertainty

• Stronger semantics are achievable
– Greater scale != weaker semantics
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