
External Consistency
and Spanner
CS425/ECE428 — SPRING 2020

NIKITA BORISOV, UIUC

Transactions so far
Objects distributed / partitioned among different servers

◦ For load balancing (sharding)
◦ For separation of concerns / administration

Isolation enforced using two-phase locking (2PL)
◦ Each server maintains locks on own objects
◦ Deadlocks detected using e.g., edge-chasing

Atomic commit using 2PC
◦ Prepare to commit ensures durability
◦ Recover from coordinator and participant crashes

Dealing with Failures
Node failure

◦ Objects unavailable until recovery
◦ 2PC “stuck” after coordinator failure

But! Node failure is common

Drive failures => no recovery!

Replication
Objects distributed among 1000’s cluster nodes for load-balancing (sharding)

Objects replicated among a handful of nodes for availability / durability
◦ Replication across data centers, too

Two-level operation:
◦ Use transactions, coordinators, 2PC per object
◦ Use Paxos / Raft among object replicas

Note: can be expensive!
◦ Coordinator sends Prepare message to leaders of each replica group
◦ Each leader uses Paxos / Raft to commit the Prepare to the group logs
◦ Once commit succeeds, reply to coordinator
◦ Coordinator uses Paxos / Raft to commit decision to its group log

Example transaction
read A -> acquire read lock on A

read B -> acquire read lock on B

write A -> promote A’s lock to write lock

commit -> perform 2PC
◦ Coordinator -> A, B: prepare
◦ A, B -> OK
◦ Coordinator -> A, B: commit

Read transactions
Read transactions often access many data items

◦ E.g., Facebook ”news feed”
◦ E.g., Amazon front page
◦ E.g., balances across all accounts

Read transactions still need (read) locks (Why?)

Acquiring locks requires consensus (Why?)

Locks prevent write transactions from moving forward

Linearizability
Serial equivalence:

◦ Total effect on system is equivalent to a run that is serial and consistent with each client’s order

Linearizability
◦ Total effect on system is equivalent to a run that is serial and consistent with actual order of events

E.g., buying a movie
◦ Client makes RPC to bank transfers $3.99 to Amazon account
◦ Client requests video from Amazon
◦ Amazon makes RPC to bank, does not see transfer, rejects request!

Spanner: Google’s
Globally-Distributed Database

Wilson Hsieh
representing a host of authors

OSDI 2012

What is Spanner?

• Distributed multiversion database
• General-purpose transactions (ACID)
• SQL query language
• Schematized tables
• Semi-relational data model

• Running in production
• Storage for Google’s ad data
• Replaced a sharded MySQL database

OSDI 2012 9

Example: Social Network

OSDI 2012

User posts
Friend lists
User posts
Friend lists
User posts
Friend lists
User posts
Friend lists

US

Brazil

Russia
Spain

San Francisco
Seattle
Arizona

Sao Paulo
Santiago
Buenos Aires

Moscow
Berlin
Krakow

London
Paris
Berlin
Madrid
Lisbon

User posts
Friend lists

10

x1000

x1000

x1000

x1000

Overview

• Feature: Lock-free distributed read transactions
• Property: External consistency of distributed

transactions
– First system at global scale

• Implementation: Integration of concurrency
control, replication, and 2PC
– Correctness and performance

• Enabling technology: TrueTime
– Interval-based global time

OSDI 2012 11

Read Transactions

• Generate a page of friends’ recent posts
– Consistent view of friend list and their posts

OSDI 2012

Why consistency matters
1. Remove untrustworthy person X as friend
2. Post P: “My government is repressive…”

12

User posts
Friend lists
User posts
Friend lists

Single Machine

Friend2 post

Generate my page

Friend1 post

Friend1000 post
Friend999 post

Block writes

OSDI 2012

…

13

User posts
Friend lists
User posts
Friend lists

Multiple Machines

User posts
Friend lists

Generate my page

Friend2 post
Friend1 post

Friend1000 post
Friend999 post

User posts
Friend lists

Block writes

OSDI 2012

…

14

User posts
Friend lists

User posts
Friend lists

User posts
Friend lists

Multiple Datacenters
User posts
Friend lists

Generate my page

Friend2 post

Friend1 post

Friend1000 post

Friend999 post

OSDI 2012

…

US

Spain

Russia

Brazil

15

x1000

x1000

x1000

x1000

Version Management

• Transactions that write use strict 2PL
– Each transaction T is assigned a timestamp s
– Data written by T is timestamped with s

OSDI 2012 16

Time 8<8

[X]

[me]

15

[P]
My friends
My posts
X’s friends

[]

[]

Synchronizing Snapshots

==
External Consistency:

Commit order respects global wall-time order

OSDI 2012 17

==
Timestamp order respects global wall-time order

given
timestamp order == commit order

Global wall-clock time

Timestamps, Global Clock

• Strict two-phase locking for write transactions
• Assign timestamp while locks are held

T

Pick s = now()

Acquired locks Release locks

OSDI 2012 18

Timestamp Invariants

OSDI 2012 19

• Timestamp order == commit order

• Timestamp order respects global wall-time order

T2

T3

T4

T1

TrueTime

• “Global wall-clock time” with bounded
uncertainty

time

earliest latest

TT.now()

2*ε

OSDI 2012 20

Timestamps and TrueTime

T

Pick s = TT.now().latest

Acquired locks Release locks

Wait until TT.now().earliest > ss

OSDI 2012

average ε

Commit wait

average ε

21

Commit Wait and Replication

OSDI 2012

T

Acquired locks Release locks

Start consensus Notify slaves

Commit wait donePick s

22

Achieve consensus

Commit Wait and 2-Phase Commit

OSDI 2012

TC

Acquired locks Release locks

TP1

Acquired locks Release locks

TP2

Acquired locks Release locks

Notify participants of s

Commit wait doneCompute s for each

23

Start logging Done logging

Prepared

Compute overall s

Committed

Send s

Example

OSDI 2012 24

TP

Remove X from
my friend list

Remove myself
from X’s friend list

sC=6

sP=8

s=8 s=15

Risky post P

s=8

Time <8

[X]

[me]

15

TC T2

[P]
My friends
My posts
X’s friends

8

[]

[]

What Have We Covered?

• Lock-free read transactions across datacenters
• External consistency
• Timestamp assignment
• TrueTime
– Uncertainty in time can be waited out

OSDI 2012 25

What Haven’t We Covered?

• How to read at the present time
• Atomic schema changes
–Mostly non-blocking
– Commit in the future

• Non-blocking reads in the past
– At any sufficiently up-to-date replica

OSDI 2012 26

TrueTime Architecture

Datacenter 1 Datacenter n…Datacenter 2

GPS
timemaster

GPS
timemaster

GPS
timemaster

Atomic-clock
timemaster

GPS
timemaster

Client

OSDI 2012 27

GPS
timemaster

Compute reference [earliest, latest] = now ± ε

TrueTime implementation

time

ε

0sec 30sec 60sec 90sec

+6ms

now = reference now + local-clock offset
ε = reference ε + worst-case local-clock drift

reference
uncertainty

OSDI 2012 28

200 μs/sec

What If a Clock Goes Rogue?

• Timestamp assignment would violate external consistency
• Empirically unlikely based on 1 year of data
– Bad CPUs 6 times more likely than bad clocks

OSDI 2012 29

Network-Induced Uncertainty

OSDI 2012

Mar 29 Mar 30 Mar 31 Apr 1
Date

2

4

6

8

10

Ep
sil

on
 (m

s)

99.9
99
90

6AM 8AM 10AM 12PM
Date (April 13)

1

2

3

4

5

6

30

Conclusions

• Reify clock uncertainty in time APIs
– Known unknowns are better than unknown

unknowns
– Rethink algorithms to make use of uncertainty

• Stronger semantics are achievable
– Greater scale != weaker semantics

OSDI 2012 33

