
2PC, Linearizability, Spanner

2020-04-17 Nikita Borisov - UIUC 12

Topics for Today

• Two-phase commit
• Atomic commit protocol
• Crash-recovery, durability

• External consistency / linearizability
• Spanner

• Multi-version database
• Lock-free reads
• TrueTime

2020-04-17 Nikita Borisov - UIUC 13

Midterm Grades

Statistics:
Median 51/70 (72.9%), Mean 49.56/70 (70.8%), std dev 7.53 (10.8%)

Credit / No-Credit:
• Request by April 30
• C- or above: Credit in course
• In either case, does not affect GPA

2020-04-17 Nikita Borisov - UIUC 14

C- grade cutoff:
Midterm 1: > 45/70
Midterm 2: > 43/70
HW/MPs: > 70%

II. Atomic Commit Problem

• At some point, client executes closeTransaction()
• Result -> commit, abort

• Atomicity requires all-or-nothing
• All operations on all servers are committed, or
• All operations on all servers are aborted

• What problem statement is this?

2020-04-17 Nikita Borisov - UIUC 15

Consensus

Paxos / Raft

E.g., “I will grade Q2 on exam”
• Sending commands / update on

replicated state
• Proposals accepted by default
• Proceed as long as majority of

nodes live

2PC

E.g., “Can we all meet at 3pm?”
E.g., “Ready to submit MP2?”
• Coordinating distributed action
• Participants can disagree
• Wait or abort on missing

participant

2020-04-17 Nikita Borisov - UIUC 16

Atomic Commit Protocols

• First attempt: Coordinator decides
• Pick commit or abort
• Send message to all participants
• (Retransmit until acknowledged)

• Problems?
• Participant crashes before receiving commit message
• Participant decides to abort (deadlock, other problems)

2020-04-17 Nikita Borisov - UIUC 17

Two-phase Commit

• Phase 1: all participants vote to commit or abort
• If you vote to commit, store partial results in permanent storage
• If crash after vote to commit, can restore transaction later

• Phase 2:
• Save result of vote in permanent storage
• If all vote commit, multicast commit message
• If any vote abort, multicast abort message

2020-04-17 Nikita Borisov - UIUC 18

RPCs for Two-Phase Commit Protocol

2020-04-17 Nikita Borisov - UIUC 19

Coordinator -> Participant
canCommit?(trans)-> Yes / No

Ask whether participant can commit a transaction. Participant
replies with its vote.

doCommit(trans)
Tell participant to commit its part of a transaction.

doAbort(trans)
Tell participant to abort its part of a transaction.

Participant -> Coordinator
haveCommitted(trans, participant)

Confirm that participant has committed the transaction. (May not
be required if getDecision() is used – see below)

getDecision(trans) -> Yes / No
Ask for the decision on a transaction after participant has voted Yes
but has still had no reply after some delay. Used to recover from
server crash or delayed messages.

2PC – Coordinator

• Phase 1:
• Send canCommit? to all participants, tabulate replies

• Phase 2:
• If all votes are yes, send doCommit to all participants
• If any votes are no, or any participant doesn’t reply after timeout, send doAbort

to all participants [who said yes]
• Store commit decision to stable storage to support recovery

• Recovery after crash
• If commit decision in stable storage, confirm with participants (push)

or wait for getDecision (pull)
• If getDecision called on commit not in log, reply No

2020-04-17 Nikita Borisov - UIUC 20

errs on side of
safety

2PC - Participant

• Phase 1: receive canCommit?
• If OK to commit, reply Yes and store transaction in permanent storage
• If not OK, reply No and abort immediately

• Phase 2
• If receive doCommit, commit transaction
• If receive doAbort, abort transaction
• If timeout, call getDecision

• Recovery after crash
• If crashed after a Yes in Phase 1, call getDecision
• If should commit, recover transaction from permanent storage and commit

2020-04-17 Nikita Borisov - UIUC 21

The two-phase commit protocol

• Phase 1 (voting phase):
• 1. The coordinator sends a canCommit? request to each of the participants in the transaction.
• 2. When a participant receives a canCommit? request it replies with its vote (Yes or No) to the

coordinator. Before voting Yes, it prepares to commit by saving objects in permanent storage. If its
vote is No, the participant aborts immediately.

• Phase 2 (completion according to outcome of vote):
• 3. The coordinator collects the votes (including its own).

• (a) If there are no failures and all the votes are Yes, the coordinator decides to commit the
transaction and sends a doCommit request to each of the participants.

• (b) Otherwise the coordinator decides to abort the transaction and sends doAbort requests to
all participants that voted Yes.

• 4. Participants that voted Yes are waiting for a doCommit or doAbort request from the coordinator.
When a participant receives one of these messages it acts accordingly and in the case of commit,
makes a haveCommitted call as confirmation to the coordinator.

2020-04-17 Nikita Borisov - UIUC 22

Recall that
server may
crash

2020-04-17 Nikita Borisov - UIUC 23

canCommit?

Yes

doCommit

haveCommitted

Coordinator

1

3

(waiting for votes)

committed

done

prepared to commit

step

Participant

2

4

(uncertain)
prepared to commit

committed

statusstepstatus

v To deal with server crashes
vEach participant saves tentative updates into permanent storage, right before

replying yes/no in first phase. Retrievable after crash recovery.
v To deal with canCommit? loss

v The participant may decide to abort unilaterally after a timeout (coordinator will
eventually abort)

v To deal with Yes/No loss, the coordinator aborts the transaction after a timeout
(pessimistic!). It must annouce doAbort to those who sent in their votes.

v To deal with doCommit loss
v The participant may wait for a timeout, send a getDecision request (retries until

reply received) – cannot unilaterally abort after having voted Yes but before
receiving doCommit/doAbort!

Two Phase Commit (2PC) Protocol

2020-04-17 Nikita Borisov - UIUC 24

Coordinator Participant

Execute
• Precommit

Uncertain
•Send request to
each participant
• Wait for replies
(time out
possible)

Commit
•Send COMMIT to
each participant

Abort
•Send ABORT to
each participant

Execute

• Precommit
• send YES to
coordinator
• Wait for
decision

Abort
•Send NO to
coordinator

NO
YES

request

not
ready ready

All
YES

Timeout
or a NO

Commit
• Make
transaction
visible

Abort

COMMIT
decision

CloseTrans()

ABORT
decision

Transactions so far
Objects distributed / partitioned among different servers

◦ For load balancing (sharding)
◦ For separation of concerns / administration

Isolation enforced using two-phase locking (2PL)
◦ Each server maintains locks on own objects
◦ Deadlocks detected using e.g., edge-chasing

Atomic commit using 2PC
◦ Prepare to commit ensures durability
◦ Recover from coordinator and participant crashes

Dealing with Failures
Node failure

◦ Objects unavailable until recovery
◦ 2PC “stuck” after coordinator failure

But! Node failure is common

Drive failures => no recovery!

Replication
Objects distributed among 1000’s cluster nodes for load-balancing (sharding)

Objects replicated among a handful of nodes for availability / durability
◦ Replication across data centers, too

Two-level operation:
◦ Use transactions, coordinators, 2PC per object
◦ Use Paxos / Raft among object replicas

Note: can be expensive!
◦ Coordinator sends Prepare message to leaders of each replica group
◦ Each leader uses Paxos / Raft to commit the Prepare to the group logs
◦ Once commit succeeds, reply to coordinator
◦ Coordinator uses Paxos / Raft to commit decision to its group log

