Timestamp Ordering

Assign each transaction a unique
timestamp (ts)

T(1) U (2) V(3)
>t5i$nrglgemt£2nsactions according to read X (X.rts=1)
Keep track of timestamp last write Y(Y.wts=1)
transaction to and an object read X (X.rts=2)
Invariants read Y (Y.rts = 3)
1. IfT O, last timestamp write X (X.wts=3)

timestamp must be lower than T’s Write X: abort!

If T tries to read/write object with
higher timestamp, abort and rollback

45

Timestamp Ordering Invariants

Let T1 and T2 have timestamps 1 and 2
Invariants enforce order T1; T2

I1: If T reads O, last write timestamp

must be lower than T write O

* If T1 reads O after T2 writes O, T1 sees

. read O
T2's write

Timestamp Ordering Invariants

Let T1 and T2 have timestamps 1 and 2
Invariants enforce order T1; T2

11 T reads O, st write timestamp

must be lower than T read O

* If T1 reads O after T2 writes O, T1 sees
T2’S write write O

12: If T writes O, last read and write
timestamp must be lower than T’s

* If T2 reads O before T1 writes O, T2
missed T1’s write

Timestamp Ordering Invariants

Let T1 and T2 have timestamps 1 and 2
Invariants enforce order T1; T2

I11: If T reads O, last write timestamp must _—
be lower than T Tl T2

* If T1 reads O after T2 writes O, T1 sees write O
T2's write

12: If T writes O, last read and write write O
timestamp must be lower than T’s

* If T2 reads O before T1 writes O, T2
missed T1’s write

* If T1 writes O after T2 writes O, T2's write
has been lost

Thomas Write Rule

Let T1 and T2 have timestamps 1 and 2
Invariants enforce order T1; T2

I11: If T reads O, last write timestamp must be lower

* |f T1 reads O after T2 writes O, T1 sees T2’s write .
write O

12: If T writes O, last read and write timestamp
must be lower than T’s

* If T2 reads O before T1 writes O, T2 missed T1’s write O
write

e |f T1 writes O after T2 writes O, T2’s write has
been lost

If T writes O and last write timestamp > T’s, skip
write!

Should we abort or skip here?

T (1) U (2) V (3)
read X (X.rts=1)
write Y(Y.wts=1)
read X (X.rts=2)
read Y (Y.rts = 3)
write X (X.wts=3)
read Y (Y.rts=3)
write X: ??77?

Dependency Tracking

Read X->0

Start with X=0, Y=0, Z=0

WriteY=1
ReadY->1
WriteZ =2

Read Z—ABORT!

Dependency Tracking

Start with X=0, Y=0, Z=0

T2 has read value that was Read Y > 1
produced by aborted transaction!
WriteZ=2

Dependency Tracking

Start with X=0, Y=0, Z=0

Write V=1
T2 has read value that was produced by
aborted transaction!

ReadY->1

When reading object O, add its RTS to S———
dependency list ritec=
At commit time, check dependency list

Read Z—ABORH!

 If tx in dependency list has aborted,
abort

* If tx in dependency list is still active,
walt

Timestamp Ordering

T (1) U (2)
read X (X.rts=1)
write Y(Y.wts=1)

V (3)

read X (X.rts=2)

read Y (Y.rts = 3)
write X (X.wts=3)
write Z (Z.wts=3)

read Y (Y.rts=3)

write Z: skip!

T (1) U(2) V(3)
read X
write Y
write Z
read X
read Y
read Y
write X
write Z

4

Timestamp Summary

read(X) write(X)
if WTS(X) > myTS: if RTS(X) > myTS:
abort() abort()
myDEPS.add (WTS (X)) if WTS(X) > myTS:
RTS(X) = return # skip write
max (RTS(X), myTS) WTS(X) = myTS

At commit time, wait for myDEPS to complete,
abort if any has aborted

Distributed Transactions

CS425/ECE428 — Distributed Systems — Spring 2020

Client-Server Transactions

open tx

commit/abort

e Atomicity: all-or-nothing
* Make updates on a shadow copy
e Real update on commit, discard on abort

* Consistency: invariants satisfied
* Check and abort on violations

* Isolation: concurrent transactions serially equivalent
* Two-phase locking (strict or otherwise)

* Durability: results preserved after crashes
» Save committed updates to disk, recover state after crash

2020-04-17 Nikita Borisov - UIUC

Distributed Transactions

* A transaction that invokes operations at several servers.

j
e
S
Flat Distributed Transaction Nested Distributed Transaction

2020-04-17 Nikita Borisov - UIUC

Coordination in Distributed Transactions

Coordinator. join _'Par icipant , Coordinator
X l'

Participant

Coordinator & Participants The Coordination Process

2020-04-17 Nikita Borisov - UIUC

Distributed banking
transaction

openTransaction
closeTransactio

participant

A e a.withdraw(4);

BranchX

participant

Client b.withdraw(T, 3); B e b.withdraw(3);

T =openTransaction

a.withdraw(4); ECILE UL
c.deposit(4); participant
b.withdraw(3); _
d.deposit(3); C c.deposit(4);
close Transaction
D e d.deposit(3);
Note: the coordinator is in one of the servers, e.g. BranchX Branch?

2020-04-17

Distributed Transaction Challenges

* Atomicity: all-or-nothing
* Must ensure atomicity across servers
* Consistency: invariants satisfied

* Generally done locally, but may need to check non-local invariants at commit
time
* Isolation: concurrent transactions serially equivalent

* Locks at each server.

* Durability: results preserved after crashes
* Each server keeps local recovery log

|. Locks in Distributed Transactions

* Each server is responsible for applying concurrency control to
objects it stores.

e Servers are collectively responsible for serial equivalence of
operations.

* Locks are held locally and cannot be released until all servers
involved in a transaction have committed or aborted.

* Locks are retained during 2PC protocol.

 Since lock managers work independently, deadlocks are possible
(likely?)

Distributed Deadlocks

* The wait-for graph in a distributed set of transactions is distributed

* Centralized detection
e Each server reports waits-for relationships to coordinator

* Coordinator constructs global graph, checks for cycles

* Decentralized —
* Forward “probe” messages to servers in the edges of wait-for graph, pushing

the graph forward, until cycle is found.

Probes Transmitted to Detect Deadlock

4. W
W—>U-> VoW Waits for

Deadlock c ™)
detected U

4

Waits
for

Held by Waits for

2020-04-17

Edge Chasing

: When a server S; notices that a transaction T starts waiting for
another transaction U, where U is waiting to access an object at another
server S,, it initiates detection by sending <T->U>to S,.

: Servers receive probes and decide whether deadlock has
occurred and whether to forward the probes.

: When a cycle is detected, one or more transactions in the cycle
is/are aborted to break the deadlock.

* Phantom deadlocks=false detection of deadlocks that don’t actually exist

* Edge chasing messages contain stale data (Edges may have disappeared in the

meantime). So, all edges in a “detected” cycle may not have been present in the
system all at the same time.

Transaction Priority

* Transactions are given priorities
* E.g., inverse of timestamp
* Total order

 When deadlock cycle is found, abort lowest priority transaction
* Only one aborted even if several simultaneous probes find cycle

II. Atomic Commit Problem

* At some point, client executes closeTransaction()
e Result -> commit, abort

e Atomicity requires all-or-nothing
* All operations on all servers are committed, or
* All operations on all servers are aborted

* What problem statement is this?

Atomic Commit Protocols

* Impossible to be totally correct
* Possible to ensure safety, at the (possible) expense of liveness
* Plus, we already have a leader (coordinator)

* First attempt: Coordinator decides
* Pick commit or abort
* Send message to all participants
e (Retransmit until acknowledged)

* Problems?
 Participant crashes before receiving commit message
 Participant decides to abort (deadlock, other problems)

