
Timestamp Ordering

Assign each transaction a unique 
timestamp (ts)
ØSerialize transactions according to 

timestamps
Keep track of timestamp last 
transaction to read and write an object
Invariants
1. If T reads O, last write timestamp 

must be lower than T
2. If T writes O, last read and write

timestamp must be lower than T’s
If T tries to read/write object with 
higher timestamp, abort and rollback

T (1) U (2) V (3)
read X (X.rts=1)
write Y(Y.wts=1)

read X (X.rts=2)
read Y (Y.rts = 3)
write X (X.wts=3)

read Y (Y.rts=3)
write X: abort! 
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Timestamp Ordering Invariants

Let T1 and T2 have timestamps 1 and 2
Invariants enforce order T1 ; T2
I1: If T reads O, last write timestamp 
must be lower than T
• If T1 reads O after T2 writes O, T1 sees 

T2’s write

T1 T2
write O

read O



Timestamp Ordering Invariants

Let T1 and T2 have timestamps 1 and 2
Invariants enforce order T1 ; T2
I1: If T reads O, last write timestamp 
must be lower than T
• If T1 reads O after T2 writes O, T1 sees 

T2’s write
I2: If T writes O, last read and write
timestamp must be lower than T’s
• If T2 reads O before T1 writes O, T2 

missed T1’s write

T1 T2
read O

write O



Timestamp Ordering Invariants

Let T1 and T2 have timestamps 1 and 2
Invariants enforce order T1 ; T2
I1: If T reads O, last write timestamp must 
be lower than T
• If T1 reads O after T2 writes O, T1 sees 

T2’s write
I2: If T writes O, last read and write
timestamp must be lower than T’s
• If T2 reads O before T1 writes O, T2 

missed T1’s write
• If T1 writes O after T2 writes O, T2’s write 

has been lost

T1 T2
write O

write O



Thomas Write Rule

Let T1 and T2 have timestamps 1 and 2
Invariants enforce order T1 ; T2
I1: If T reads O, last write timestamp must be lower 
than T
• If T1 reads O after T2 writes O, T1 sees T2’s write
I2: If T writes O, last read and write timestamp 
must be lower than T’s
• If T2 reads O before T1 writes O, T2 missed T1’s 

write
• If T1 writes O after T2 writes O, T2’s write has 

been lost
If T writes O and last write timestamp > T’s, skip 
write!

T1 T2
write O

write O



Should we abort or skip here?

T (1) U (2) V (3)
read X (X.rts=1)
write Y(Y.wts=1)

read X (X.rts=2)
read Y (Y.rts = 3)
write X (X.wts=3)

read Y (Y.rts=3)
write X: ??? 



Dependency Tracking

Start with X=0, Y=0, Z=0

T1 T2
Read X -> 0

Write Y = 1

Read Y -> 1

Write Z = 2

Read Z—ABORT!



Dependency Tracking

Start with X=0, Y=0, Z=0

T2 has read value that was 
produced by aborted transaction!

T1 T2
Read X -> 0

Write Y = 1

Read Y -> 1

Write Z = 2

Read Z—ABORT!



Dependency Tracking

Start with X=0, Y=0, Z=0

T2 has read value that was produced by 
aborted transaction!

When reading object O, add its RTS to 
dependency list
At commit time, check dependency list
• If tx in dependency list has aborted, 

abort
• If tx in dependency list is still active, 

wait

T1 T2
Read X -> 0

Write Y = 1

Read Y -> 1

Write Z = 2

Read Z—ABORT!



Timestamp Ordering

T (1) U (2) V (3)
read X (X.rts=1)
write Y(Y.wts=1)

read X (X.rts=2)
read Y (Y.rts = 3)
write X (X.wts=3)
write Z (Z.wts=3)

read Y (Y.rts=3)
write Z: skip! 
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T (1) U(2) V(3)
read X
write Y
write Z

read X
read Y

read Y
write X
write Z



Timestamp Summary
read(X)
if WTS(X) > myTS:

abort()
myDEPS.add(WTS(X))
RTS(X) =

max(RTS(X), myTS) 

write(X)
if RTS(X) > myTS:

abort()
if WTS(X) > myTS:

return # skip write
WTS(X) = myTS

At commit time, wait for myDEPS to complete,
abort if any has aborted



Distributed Transactions
CS425/ECE428 – Distributed Systems – Spring 2020

Material derived from slides by I. Gupta, M. Harandi, 
J. Hou, S. Mitra, K. Nahrstedt, N. Vaidya



Client-Server Transactions

• Atomicity: all-or-nothing
• Make updates on a shadow copy
• Real update on commit, discard on abort

• Consistency: invariants satisfied
• Check and abort on violations

• Isolation: concurrent transactions serially equivalent
• Two-phase locking (strict or otherwise)

• Durability: results preserved after crashes
• Save committed updates to disk, recover state after crash
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Client Server
open tx

[…]
commit/abort



Distributed Transactions 

• A transaction that invokes operations at several servers.  
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Coordination in Distributed Transactions 
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Distributed banking 
transaction
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a.withdraw(4);

c.deposit(4);

b.withdraw(3);

d.deposit(3);

openTransaction

b.withdraw(T, 3);

closeTransaction

T = openTransaction
a.withdraw(4);
c.deposit(4);
b.withdraw(3);
d.deposit(3);

closeTransaction

Note: the coordinator is in one of the servers, e.g. BranchX



Distributed Transaction Challenges

• Atomicity: all-or-nothing
• Must ensure atomicity across servers

• Consistency: invariants satisfied
• Generally done locally, but may need to check non-local invariants at commit 

time

• Isolation: concurrent transactions serially equivalent
• Locks at each server.

• Durability: results preserved after crashes
• Each server keeps local recovery log
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I. Locks in Distributed Transactions 

• Each server is responsible for applying concurrency control to 
objects it stores.
• Servers are collectively responsible for serial equivalence of 

operations.
• Locks are held locally and cannot be released until all servers 

involved in a transaction have committed or aborted.
• Locks are retained during 2PC protocol.
• Since lock managers work independently, deadlocks are possible 

(likely?)
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Distributed Deadlocks

• The wait-for graph in a distributed set of transactions is distributed
• Centralized detection

• Each server reports waits-for relationships to coordinator
• Coordinator constructs global graph, checks for cycles

• Decentralized — edge chasing
• Forward “probe” messages to servers in the edges of wait-for graph, pushing 

the graph forward, until cycle is found.
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Probes Transmitted to Detect Deadlock
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Edge Chasing

• Initiation: When a server S1 notices that a transaction T starts waiting for 
another transaction U, where U is waiting to access an object at another 
server S2, it initiates detection by sending <TàU> to S2.
• Detection: Servers receive probes and decide whether deadlock has 

occurred and whether to forward the probes.
• Resolution: When a cycle is detected, one or more transactions in the cycle 

is/are aborted to break the deadlock.
• Phantom deadlocks=false detection of deadlocks that don’t actually exist

• Edge chasing messages contain stale data (Edges may have disappeared in the 
meantime). So, all edges in a “detected” cycle may not have been present in the 
system all at the same time. 
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Transaction Priority

• Transactions are given priorities
• E.g., inverse of timestamp
• Total order

• When deadlock cycle is found, abort lowest priority transaction
• Only one aborted even if several simultaneous probes find cycle
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II. Atomic Commit Problem 

• At some point, client executes closeTransaction()
• Result -> commit, abort

• Atomicity requires all-or-nothing
• All operations on all servers are committed, or
• All operations on all servers are aborted

• What problem statement is this?
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Atomic Commit Protocols

• Consensus!
• Impossible to be totally correct
• Possible to ensure safety, at the (possible) expense of liveness
• Plus, we already have a leader (coordinator)

• First attempt: Coordinator decides
• Pick commit or abort
• Send message to all participants
• (Retransmit until acknowledged)

• Problems?
• Participant crashes before receiving commit message
• Participant decides to abort (deadlock, other problems)
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