
Timestamp Ordering

Assign each transaction a unique
timestamp (ts)
ØSerialize transactions according to

timestamps
Keep track of timestamp last
transaction to read and write an object
Invariants
1. If T reads O, last write timestamp

must be lower than T
2. If T writes O, last read and write

timestamp must be lower than T’s
If T tries to read/write object with
higher timestamp, abort and rollback

T (1) U (2) V (3)
read X (X.rts=1)
write Y(Y.wts=1)

read X (X.rts=2)
read Y (Y.rts = 3)
write X (X.wts=3)

read Y (Y.rts=3)
write X: abort!

45

Timestamp Ordering Invariants

Let T1 and T2 have timestamps 1 and 2
Invariants enforce order T1 ; T2
I1: If T reads O, last write timestamp
must be lower than T
• If T1 reads O after T2 writes O, T1 sees

T2’s write

T1 T2
write O

read O

Timestamp Ordering Invariants

Let T1 and T2 have timestamps 1 and 2
Invariants enforce order T1 ; T2
I1: If T reads O, last write timestamp
must be lower than T
• If T1 reads O after T2 writes O, T1 sees

T2’s write
I2: If T writes O, last read and write
timestamp must be lower than T’s
• If T2 reads O before T1 writes O, T2

missed T1’s write

T1 T2
read O

write O

Timestamp Ordering Invariants

Let T1 and T2 have timestamps 1 and 2
Invariants enforce order T1 ; T2
I1: If T reads O, last write timestamp must
be lower than T
• If T1 reads O after T2 writes O, T1 sees

T2’s write
I2: If T writes O, last read and write
timestamp must be lower than T’s
• If T2 reads O before T1 writes O, T2

missed T1’s write
• If T1 writes O after T2 writes O, T2’s write

has been lost

T1 T2
write O

write O

Thomas Write Rule

Let T1 and T2 have timestamps 1 and 2
Invariants enforce order T1 ; T2
I1: If T reads O, last write timestamp must be lower
than T
• If T1 reads O after T2 writes O, T1 sees T2’s write
I2: If T writes O, last read and write timestamp
must be lower than T’s
• If T2 reads O before T1 writes O, T2 missed T1’s

write
• If T1 writes O after T2 writes O, T2’s write has

been lost
If T writes O and last write timestamp > T’s, skip
write!

T1 T2
write O

write O

Should we abort or skip here?

T (1) U (2) V (3)
read X (X.rts=1)
write Y(Y.wts=1)

read X (X.rts=2)
read Y (Y.rts = 3)
write X (X.wts=3)

read Y (Y.rts=3)
write X: ???

Dependency Tracking

Start with X=0, Y=0, Z=0

T1 T2
Read X -> 0

Write Y = 1

Read Y -> 1

Write Z = 2

Read Z—ABORT!

Dependency Tracking

Start with X=0, Y=0, Z=0

T2 has read value that was
produced by aborted transaction!

T1 T2
Read X -> 0

Write Y = 1

Read Y -> 1

Write Z = 2

Read Z—ABORT!

Dependency Tracking

Start with X=0, Y=0, Z=0

T2 has read value that was produced by
aborted transaction!

When reading object O, add its RTS to
dependency list
At commit time, check dependency list
• If tx in dependency list has aborted,

abort
• If tx in dependency list is still active,

wait

T1 T2
Read X -> 0

Write Y = 1

Read Y -> 1

Write Z = 2

Read Z—ABORT!

Timestamp Ordering

T (1) U (2) V (3)
read X (X.rts=1)
write Y(Y.wts=1)

read X (X.rts=2)
read Y (Y.rts = 3)
write X (X.wts=3)
write Z (Z.wts=3)

read Y (Y.rts=3)
write Z: skip!

54

T (1) U(2) V(3)
read X
write Y
write Z

read X
read Y

read Y
write X
write Z

Timestamp Summary
read(X)
if WTS(X) > myTS:

abort()
myDEPS.add(WTS(X))
RTS(X) =

max(RTS(X), myTS)

write(X)
if RTS(X) > myTS:

abort()
if WTS(X) > myTS:

return # skip write
WTS(X) = myTS

At commit time, wait for myDEPS to complete,
abort if any has aborted

Distributed Transactions
CS425/ECE428 – Distributed Systems – Spring 2020

Material derived from slides by I. Gupta, M. Harandi,
J. Hou, S. Mitra, K. Nahrstedt, N. Vaidya

Client-Server Transactions

• Atomicity: all-or-nothing
• Make updates on a shadow copy
• Real update on commit, discard on abort

• Consistency: invariants satisfied
• Check and abort on violations

• Isolation: concurrent transactions serially equivalent
• Two-phase locking (strict or otherwise)

• Durability: results preserved after crashes
• Save committed updates to disk, recover state after crash

2020-04-17 Nikita Borisov - UIUC 2

Client Server
open tx

[…]
commit/abort

Distributed Transactions

• A transaction that invokes operations at several servers.

2020-04-17 Nikita Borisov - UIUC 3

T

A

Y

Z

B

C

D

T

T1

T2

T11

T12

T21

T22

A

B

C

D

F

H

K

Flat Distributed Transaction Nested Distributed Transaction

X

Coordination in Distributed Transactions

2020-04-17 Nikita Borisov - UIUC 4

T

A

Y

Z

B

C

D

X

join

join

join

Coordinator Participant

Participant

Participant

T

CoordinatorOpen
Transacton

TID
Close
Transaction

Abort
Transaction

Participant
A

a.method (TID)
1

2

Join (TID, ref)
3

Coordinator & Participants The Coordination Process

Distributed banking
transaction

2020-04-17 Nikita Borisov - UIUC 5

..

BranchZ

BranchX

participant

participant

C

D

Client

BranchY

B

A

participantjoin

join

join

T

a.withdraw(4);

c.deposit(4);

b.withdraw(3);

d.deposit(3);

openTransaction

b.withdraw(T, 3);

closeTransaction

T = openTransaction
a.withdraw(4);
c.deposit(4);
b.withdraw(3);
d.deposit(3);

closeTransaction

Note: the coordinator is in one of the servers, e.g. BranchX

Distributed Transaction Challenges

• Atomicity: all-or-nothing
• Must ensure atomicity across servers

• Consistency: invariants satisfied
• Generally done locally, but may need to check non-local invariants at commit

time

• Isolation: concurrent transactions serially equivalent
• Locks at each server.

• Durability: results preserved after crashes
• Each server keeps local recovery log

2020-04-17 Nikita Borisov - UIUC 6

I. Locks in Distributed Transactions

• Each server is responsible for applying concurrency control to
objects it stores.
• Servers are collectively responsible for serial equivalence of

operations.
• Locks are held locally and cannot be released until all servers

involved in a transaction have committed or aborted.
• Locks are retained during 2PC protocol.
• Since lock managers work independently, deadlocks are possible

(likely?)

2020-04-17 Nikita Borisov - UIUC 7

Distributed Deadlocks

• The wait-for graph in a distributed set of transactions is distributed
• Centralized detection

• Each server reports waits-for relationships to coordinator
• Coordinator constructs global graph, checks for cycles

• Decentralized — edge chasing
• Forward “probe” messages to servers in the edges of wait-for graph, pushing

the graph forward, until cycle is found.

2020-04-17 Nikita Borisov - UIUC 8

Probes Transmitted to Detect Deadlock

2020-04-17 Nikita Borisov - UIUC 9

V

Held by
W

Waits forHeld by

Waits
for

Waits for
Deadlock
detected

U

C

A

B

Initiation

W®U ® V ®W

W®U

W®U ® V

Z

Y

X

Edge Chasing

• Initiation: When a server S1 notices that a transaction T starts waiting for
another transaction U, where U is waiting to access an object at another
server S2, it initiates detection by sending <TàU> to S2.
• Detection: Servers receive probes and decide whether deadlock has

occurred and whether to forward the probes.
• Resolution: When a cycle is detected, one or more transactions in the cycle

is/are aborted to break the deadlock.
• Phantom deadlocks=false detection of deadlocks that don’t actually exist

• Edge chasing messages contain stale data (Edges may have disappeared in the
meantime). So, all edges in a “detected” cycle may not have been present in the
system all at the same time.

2020-04-17 Nikita Borisov - UIUC 10

Transaction Priority

• Transactions are given priorities
• E.g., inverse of timestamp
• Total order

• When deadlock cycle is found, abort lowest priority transaction
• Only one aborted even if several simultaneous probes find cycle

2020-04-17 Nikita Borisov - UIUC 11

II. Atomic Commit Problem

• At some point, client executes closeTransaction()
• Result -> commit, abort

• Atomicity requires all-or-nothing
• All operations on all servers are committed, or
• All operations on all servers are aborted

• What problem statement is this?

2020-04-17 Nikita Borisov - UIUC 12

Atomic Commit Protocols

• Consensus!
• Impossible to be totally correct
• Possible to ensure safety, at the (possible) expense of liveness
• Plus, we already have a leader (coordinator)

• First attempt: Coordinator decides
• Pick commit or abort
• Send message to all participants
• (Retransmit until acknowledged)

• Problems?
• Participant crashes before receiving commit message
• Participant decides to abort (deadlock, other problems)

2020-04-17 Nikita Borisov - UIUC 13

