
Concurrency, 2PL, and 2PC

Today’s Topics

• Continue concurrency
• Review two-phase locking (2PL)

• 2PL with shared locks

• Deadlocks

• Timestamped concurrency

• Implementing distributed transactions
• Transaction manager

• Two-phase commit (2PC)

Recap from last class

Serial Equivalence: combined
effect of two (or more) tx is
equivalent to a serial execution

T1 T2
read X
read Y
write Z read A

write Y
write W

write Z

Recap from last class

Serial Equivalence: combined
effect of two (or more) tx is
equivalent to a serial execution
Conflicts are operations in two tx
on same data whose combined
effect depends on order

T1 T2
read X
read Y
write Z read A

write Y
write W

write Z

Recap from last class

Serial Equivalence: combined
effect of two (or more) tx is
equivalent to a serial execution
Conflicts are operations in two tx
on same data whose combined
effect depends on order
• Read/write or write/write

T1 T2
read X
read Y
write Z read A

write Y
write W

write Z

Recap from last class

Serial Equivalence: combined
effect of two (or more) tx is
equivalent to a serial execution
Conflicts are operations in two tx
on same data whose combined
effect depends on order
If all conflicts follow transaction
ordering, execution is serially
equivalent

T1 T2
read X
read Y
write Z read A

write Y
write W

write Z

Recap from last class

Serial Equivalence: combined
effect of two (or more) tx is
equivalent to a serial execution
Conflicts are operations in two tx
on same data whose combined
effect depends on order
If all conflicts follow transaction
ordering, execution is serially
equivalent

T1 T2
read X
read Y
write Z
write W

read A
write Y
write Z

Recap from last class

Serial Equivalence: combined effect
of two (or more) tx is equivalent to a
serial execution
Conflicts are operations in two tx on
same data whose combined effect
depends on order
If all conflicts follow transaction
ordering, execution is serially
equivalent
Two-phase locking (2PL): lock
variable before access, unlock only a
commit/abort time

T1 T2
lock X; read X
lock Y; read Y
lock Z; write Z lock A; read A

try lock Y…
lock W; write W
commit; unlock all

lock Y; write Y
lock Z; write Z

Exclusive locks: missed parallelism

T1
read A
read B
write C

T2
read A
read B
write D

2P Locking: Non-exclusive lock (per object)

• A read lock is promoted to a write
lock when the transaction needs
write access to the same object.
• A read lock shared with other

transactionsʼ read lock(s) cannot be
promoted. Transaction waits for
other read locks to be released.
• Cannot demote a write lock to read

lock during transaction – violates
the 2P principle

2019-03-26 Nikita Borisov — U. Illinois 36

Lock set Lock
requested

Action

Read Read OK

Read Write Wait

Write Read Wait

Write Write Wait

Locking Procedure in 2P Locking

• When an operation accesses an object:
• if the object is not already locked, lock the object in the lowest appropriate

mode & proceed.

• if the object has a conflicting lock by another transaction, wait until object

has been unlocked.

• if the object has a non-conflicting lock by another transaction, share the lock

& proceed.

• if the object has a lower lock by the same transaction,

• if the lock is not shared, promote the lock & proceed
• else, wait until all shared locks are released, then lock & proceed

• When a transaction commits or aborts:
• release all locks that were set by the transactions

2019-03-26 Nikita Borisov — U. Illinois 37

R/W 2PL
T1: add 1% dividend to C based on balances of A and B
Read Lock A
x := A.getBalance()
Read Lock B
y := B.getBalance()
Read Lock C
z := C.getBalance()
Promote C to write
C.setBalance((x+y)*0.01+z)
Unlock A, B, C

T2: transfer 100 from A to B
Read Lock A

t := A.getBalance()
Read Lock B
u := B.getBalance()
Try to promote A to write lock

Promote A to write lock
A.setBalance(t-100)
Promote B to write lock
B.setBalance(u+100)
Unlock A, B

Why lock promotion is necessary
T1: add 1% dividend to C based on balances of A and B
Read Lock A
x := A.getBalance()
Read Lock B
y := B.getBalance()
Read Lock C
z := C.getBalance()
Promote C to write
C.setBalance((x+y)*0.01+z)
Unlock A, B, C

T2: transfer 100 from A to B
Read Lock A

t := A.getBalance()
Read Lock B
u := B.getBalance()
Try to promote A to write lock

Promote A to write lock
A.setBalance(t-100)
Promote B to write lock
B.setBalance(u+100)
Unlock A, B

Why we need lock promotion
T1:

acquire R-lock on a
a.read()

release R-lock on a
acquire W-lock on a
a.write()
commit
release W-lock on a

T2:

acquire R-lock on a
a.read()
release R-lock on a

acquire W-lock on a
a.write()
commit
release W-lock on a

2019-03-26 Nikita Borisov — U. Illinois 40

Deadlocks
• Necessary conditions for deadlocks

• Non-shareable resources (locked objects)

• No preemption on locks

• Hold & Wait

• Circular Wait (Wait-for graph)

T U

Wait forHeld by

Held byWait for

A

B T
U

Wait forHeld by

Held byWait for

A

B
V

W

...

...

Wait for

Wait forHeld by

Held by

2019-03-26 Nikita Borisov — U. Illinois 41

Deadlock Resolution Using Timeout

Transaction T Transaction U
Operations Locks Operations Locks

a.deposit(100); write lock a

b.deposit(200) write lock b

b.withdraw(100)
waits for U’s
lock on b

a.withdraw(200); waits for T’s
lock on a

(timeout elapses)
T’s lock on A becomes vulnerable,

unlock a, abort T
a.withdraw(200); write locks a

unlock a, b, commit

2019-03-26 Nikita Borisov — U. Illinois 42

Deadlock Strategies

• Timeout: how to set value?
• Too large -> long delays

• Too small -> false positives

• Deadlock prevention
• Lock all objects at transaction start

• Use lock ordering

• Deadlock Detection (later)
• Maintain wait-for graph, look for cycle

• Abort one transaction in cycle

2019-03-26 Nikita Borisov — U. Illinois 43

Identify all conflicts

T1
read X
write Y
read Z
read W
write V

T2
read X
write Y
read A
read B
write C

Timestamp Ordering

• Assign each transaction a unique

timestamp (ts)
• Serialize transactions according to

timestamps
• Keep track of timestamp last

transaction to read and write an

object

• Maintain two invariants:

• If T writes O, last read and write
timestamp must be lower than T’s

• If T reads O, last write timestamp must
be lower than T

• If T tries to read/write object with

higher timestamp, abort and rollback

T (1) U (2) V (3)

read X (X.rts=1)

write Y(Y.wts=1)

read X (X.rts=2)

read Y (Y.rts = 3)

write X (X.wts=3)

read Y (Y.rts=3)

write X: abort!

45

