CS425 /[ECE428 — Distributed Systems — Spring 2020

Remote Procedure Calls &
Distributed Objects

Announcements

MP2 extension until April 17

MP3 released Monday, will be reduced difficulty
HW 5 out today, due on Apr 21

Can switch to credit/no credit by April 30
Will support switch to 3-credit section

2020-04-01

Communication b/w Processes

Message-based distributed systems
E.g., Ping-Ack
E.g., Election/Coordinator
E.g., DHT Lookup/Insert

E.g., RequestVotes/AppendEntries
What do these look like?

2020-04-01

Process Communication

Explicit Messages

Sender formats data, receiver parses it
Remote Procedure Call (RPC)

Call procedure/function on remote process

Pass values as parameters [receive return values
Remote Method Invocation (RMI) &

Distributed Objects

Call methods on remote objects
Pass remote references

2020-04-01

Messages—Text

HyperText Transfer Protocol

Client request |[edit] Server response | edit |

GET / HTTP/1.1 HTTP/1.1 200 OK
Host: www.example.com Date: Mon, 23 May 2005 22:38:34 GMT

Content-Type: text/html; charset=UTF-8
Content-Length: 138

Last-Modified: Wed, @08 Jan 2003 23:11:55 GMT
Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
ETag: "3f80f-1b6-3elcb@3b"

Accept-Ranges: bytes

Connection: close

<html>
<head>
<title>An Example Page</title>
</head>
<body>
<p>Hello World, this is a very simple HTML document.</p>
</body>
</html>

2020-04-01

Messages—Binary

Domain Name System (DNS)

0 4 8 12 16 20 24 28 32
| | | _ | 1 |
Identifier e Flags and Codes]
Question Count .+ - Answer Record Count
Name Server (Authority Record) Count Additional Record Count
16 7 18 .20 22 24 26 28 30 32
L L | | .
Query/ Author- - Recur- | Recur-
Res- tative | " | sion | sion
ponse | Operation Code An- °§;’°" De- | Avail Zero Response Code
!:lag s’weAr CFC% s:,ireq ’ablg
(QR) (AA) (RD) | (RA)

Figure 248: DNS Message Header Format

https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Octet_(computing)

Message Challenges

Parsing

HTTP/1.1 message format (rfc7231): 100 pages, 32k
words

Buggy/incompatible implementations
Framing

TCP does not provide framing

HTTP message:
Header followed by CRLF CR LF
... optionally followed by body, depending on message type
... whose length is specified in the Content-Length header
... unless Transfer-Encoding: chunked
... unless Content-Range is used

2020-04-01

Binary Message Framing

0 éli 112 16 2|0 24 2|8 32
3 w w w
13 X y z
i n d u
S t r i
e S 3 c
0 m 0

2020-04-01

Message Encoding Standards

Google Protocol Buffers

JSON
Apache Thrift Binary Protocol

ASN.1

2020-04-01

Example: Google Protocol Buffers

message Test1 { 08 96 01
required int32a =1;

5

message Test2 { 12 07 74 65 73 74 69 6e 67
required string b = 2; t esti ng

5

2020-04-01

Protobuf code

syntax = "proto2"; import addressbook_pb2

package tutorial; person = addressbook_pb2.Person()

message Person { person.id = 1234 |
requ;reg st%rzmg_game; 1; person.name = ;]Iohn Doe .,
required in id = 2; S R
mﬁimmlstmﬁgeman.=3; person.email doe@examp le. com

phone = person.phones.add()
phone.number = "555-4321"

enmEneneType { phone. type =
cwgﬁf % addressbook_pb2.Person.HOME

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default =
HO?E];

repeated PhoneNumber phones = 4;

message AddressBook {
repeated Person people = 1;

2020-04-01

Remote Procedure Calls

Process 1 Process 2

2020-04-01

Interface definition
Language-based
Polymorphic (E.g., Thrift)
External data representation

Handle machine representation differences (e.q.,
byte order)

Handle Failures

2020-04-01

Thrift ID

namespace java com.facebook.fb303
namespace cpp facebook.fb303
namespace perl Facebook.FB303
namespace netstd Facebook.FB303.Test

[**
* Common status reporting mechanism across all services
*/

enum fb_status {

DEAD = 0,
STARTING = 1,
ALIVE = 2,

STOPPING = 3,
STOPPED = 4,
WARNING = 5,

}

/**

* Standard base service
*/

service FacebookService {

[**
* Returns a descriptive name of the service
*/

string getName(),

[**
* Returns the version of the service
*/

string getVersion(),

[**
* Gets the status of this service
*/

fb_status getStatus(),

[**
* User friendly description of status, such as why the service is in
* the dead or warning state, or what is being started or stopped.
*/

string getStatusDetails(),

[**
* Gets the counters for this service
*/

map<string, 164> getCounters(),

2020-04-01

/**
* Gets the value of a single counter
*/
i64 getCounter(l: string key),
YL
* Sets an option
*/
void setOption(l: string key, 2: string value),
/**
* Gets an option
*/
string getOption(1l: string key),
/**
* Gets all options
*/

map<string, string> getOptions(),

/**

* Returns a CPU profile over the given time interval (client and server
* must agree on the profile format).

*/

string getCpuProfile(l: i32 profileDurationInSec),

[**

* Returns the unix time that the server has been running since
*/

i64 aliveSince(),

YEL:
* Tell the server to reload its configuration, reopen log files, etc
*/

oneway void reinitialize(),

/**
* Suggest a shutdown to the server
*/

oneway void shutdown(),

Failure Modes of RPC

correct
function

-«— Reply

— Request

crash
before

reply

— Request

crash
before
execution

2020-04-01

— Request X

lost
request

Channel
fails
during
reply

Client
machine
fails
before
receiving
reply

Invocation Semantics

J\ /\/ /

/ Fault toler% /fteasures // Invocatgon
semantics

\ l/ /4

Retransmit request Duplicate Re-execute procedure
message filtering or retransmit reply
— No Not applicable Not applicable Maybe
o, Yes No ~ Re-execute procedure At-least-once
—Yes Yes Retransmit old reply At-most-once

2020-04-01

ldempotent Operations

ldempotent operations are those that can be
repeated multiple times, without any side
effects
Examples (x is server-side variable)

X=1;

Xx=(argument) y;
Non-examples

X=X+1;

X=X*2
ldempotent operations can be used with at-
least-once semantics

2020-04-01

RMI / Distributed Objects

Remote Method Invocation

Call a method on a remote object
Incorporate remote object references

RPC generally uses call-by-value

2020-04-01

Local Objects

Within one process’s address space

consists of a set of data and a set of methods.
E.g., C++/Java object

an identifier via which objects can be accessed.
l.e., a pointer (C++)

Signatures of methods

Types of arguments, return values, exceptions
No implementation
E.g., hash table:

insert(key, value)

value = get(key)

remove(key)

2020-04-01

Remote Objects

May cross multiple process’s address spaces

method invocations between objects in different processes
(processes may be on the same or different host).

: procedure call between functions on
different processes in non-object-based system

objects that can receive remote invocations.

an identifier that can be used globally throughout a distributed
system to refer to a particular unique remote object.

Every remote object has a remote interface that specifies which
of its methods can be invoked remotely. E.g., CORBA interface
definition language (IDL).

2020-04-01

A Remote Object and Its Remote

Interface

remoteobject

Data
remote
interface 1
m1 implementatlo m
m2
m3 of methods

Example Remote Object reference=(IP,port,objectnumber,signature,time)

2020-04-01

remote

e invocation

invocation

invocation F

local

Local invocation=between objects on same process.
Has exactly once semantics

Remote invocation=between objects on different processes.
|deally also want exactly once semantics for remote invocations
But difficult (why?)

2020-04-01

Proxy and Skeleton in Remote Method

Invocation

/

client server
remote
iect A for B skeleto :
oS g Request & dispatcher object B
8 for B's clas
Reply
Remote mmunication Communication Rem reference
module

reference module

2020-04-01

module

Proxy and Skeleton in Remote Method

Invocation

client server

remote
ject A for B :
OpleQt A proxy for Request & dispatcher object B
8 for B's clas 8
Reply
Remote Communication Communication Remote reference
reference module module module module

2020-04-01

Provides transparency by behaving like a local
object to the invoker

The proxy “implements” the methods in the interface
of the remote object that it represents. But,...

Instead of executing an invocation, the proxy
forwards it to a remote object

a request message

Target object reference
Method ID
Argument values

Sends request message
reply and returns to invoker

2020-04-01

Marshalling & Unmarshalling

External data representation: an agreed, platform-
independent, standard for the representation of data
structures and primitive values.

CORBA Common Data Representation (CDR)
Sun’s XDR

Google Protocol Buffers
: taking a collection of data items
(platform dependent) and assembling them into the
external data representation (platform independent).

: the process of disassembling data
that is in external data representation form, into a
locally interpretable form.

2020-04-01

Example: JSON-RPC

REQUEST RESPONSE

19
42, 23 1

2020-04-01

Remote Reference Module

Translates Response:

local and g

remote “postID” : 1234,

object “contents”: “What is on the
references midterm”,

“response”: {
"objType”: “responseObject”,
"objRef": "12345"

2020-04-01

Remote Reference Module

An entry for each remote object held by any
process. E.qg., B at P2.

An entry for each local proxy. E.g., proxy-B at Pa.
RRM looks up remote object references

inside request and reply messages in

If reference not in , Create a new proxy and
add it to the

Then (in either case), replace reference by proxy
found in

2020-04-01

Proxy and Skeleton in Remote Method

Invocation

client server

remote
ject A for B :
OpleQt A proxy for Request & dispatcher object B
8 for B's clas 8
Reply
Remote Communication Communication Remote reference
reference module module module module

2020-04-01

What about Server Side?

Dispatcher and Skeleton

Each process has one dispatcher, and a skeleton for
each local object (actually, class)

The dispatcher receives all request messages from the
communication module.

Uses the method id to select the appropriate method in
the appropriate skeleton, passing on the request message.

Skeleton “implements” the methods in the remote
interface.

Un-marshals the arguments in the request message and
invokes the corresponding method in the remote object
(the actual object).

It waits for the invocation to complete and marshals the
result, together with any exceptions, into a reply message.

2020-04-01

Summary of Remote Method Invocation

Client Proxy) Proxy object is a ho

Process Obi :
ject container of Method
Obiect A 7| B names.
jec
j \W/ Remote Reference
Module translates
between local and

— Comm.

Module mote object
//) ences.

Serve Y Dispatcher sends
Procéss Comm. request to Skeleton
1 Module Object
_ I Skeleton unmarshals
Dispatcher s parameters, sends it

Skeleton Object to the object, &
for B's B arshals the results
——- <
Clase foirer

2020-04-01

Generation of Proxies, Dispatchers and

Skeletons

Programmer only writes object
Implementations and interfaces

E.g., CORBA: programmer specifies interface in
CORBAIDL

E.g., Java RMI: programmer defines set of remote
object methods as a Java interface
, , generated

automatically from the specified interfaces

Compiler to generate code
Can be polymorphic (multiple languages)

2020-04-01

_ocal objects vs. Remote objects
RPCs and RMls

RMI: invocation, proxies, skeletons,
dispatchers

2020-04-01

