
Midterm 2 Review



Midterm Topics

• Leader Election
• Consensus

• Formulation
• Synchronous consensus

• Paxos
• FLP Theorem
• Bitcoin
• Raft
• DHT



Midterm Format

• Timed exam, 7–9 p.m. Monday
• Exam released @ 7 p.m.
• Upload your answers to Gradescope by 9 p.m.

• Typed file strongly preferred
• Scanned handwritten solutions accepted in a pinch

• Open book but no collaboration (honor code)
• Zoom meeting (office hour) for clarifications

• Google Doc for shared clarifications



Leader Election

• Goal: elect a single leader
• Upon detecting current leader failure
• Tolerate multiple elections
• Pick leader based on attribute

• Properties
• Safety: each process considers the unique live process with highest ID new 

leader
• Liveness: a leader is eventually elected



Leader Election Algorithms

• Ring
• Send election message around the ring
• Keep track of highest ID seen
• If highest seen ID = mine, consider self elected
• One more trip around to tell everyone else

• Bully
• Send messages to all processes with higher IDs
• If none respond (timeout) consider self elected
• Otherwise, those processes start election themselves



Consensus

• Each process has some input value xi value and output value yi
• Goal: all processes agree on some output value

• Once output is set, process is in decided state, output cannot change

• Properties:
• Termination: Each (correct) process reaches decided state
• Agreement: If two correct processes pi and pj reach decided state, their 

outputs must match, yi = yj
• Integrity: If all processes have the same input, they must use it as the output:

xi = xj for all i, j => xi = yi



Synchronous Consensus

Tolerates up to f failures
• Round 1: B-multicast value to all other processes
• Round 2…f+1: B-multicast all [newly] received values to all other 

processes
• Decision: pick smallest of all received values

Intuition: after a failure-free round, all processes have the same set of 
values



FLP Theorem

Impossible to have totally correct consensus in asynchronous systems
• Important since consensus is equivalent to many other things

• Leader election
• Totally ordered multicast
• …

• In practice: design so that guarantees are met if communication delay 
within a bound
• Otherwise, give up on liveness (eg. Paxos, Raft) or safety



FLP Model

• Configuration: state of all processes + message buffer
• Initial configuration: processes’ inputs + all initial messages

• Event
• Deliver a message from message buffer to one process
• Update state & generate new messages

• Schedule: sequence of events
• Model: all messages eventually delivered but can be arbitrarily delayed, 

reordered
• Configurations:

• 0-Valent: result in decision of 0
• 1-Valent: result in decision of 1
• Bivalent: can result in either decision



FLP Proof Steps

Lemma 1: Schedules that involve non-overlapping processes commute
Lemma 2: There exists a bivalent initial configuration
Lemma 3: From a bivalent configuration, another bivalent configuration 
is always reachable

Conclusion: there is an infinite path of bivalent configurations, i.e., 
never reaches decision => liveness not satisfied

[despite all messages being eventually delivered]



Paxos: Consensus Protocol

Phase 1:
• Proposer sends a prepare request 

with a proposal #
• Acceptor replies with:

• Promise not to reply to proposals 
with lower #

• Promise not to accept proposals with 
lower #

• # and value of highest # proposal 
accepted

• No reply if would violate previous 
promise

Phase 2:
• If majority of acceptors reply, 

proposer sends accept request 
• Value = highest among replies from 

acceptors
• Acceptor accepts proposal if would 

not violate promise
• Signals acceptance to learners
Learners:
• Decision reached once majority of 

acceptors accept the same value



Log consensus

• State machines: some process state that gets updated in response to 
events
• Replicated state machines

• Maintain availability / durability if some processes fail

• Log consensus: agree on exact sequence of events/updates that get 
applied
• Log consensus + deterministic state machines => consistent replicated 

state machines



Raft consensus

Leader election
• Started when leader heartbeat 

timeout expires (randomized)
• Starts a new term
A node votes for the leader if
• Has not voted for anyone else in 

same term
• Candidate’s log is up to date
Majority votes: candidate elected
Split elections possible, term 
incremented

Log replication
• Leader acts as sequencer for 

events
• Replicates events to followers
• Event replicated by a majority of 

followers can be committed
Log consistency
• Logs of followers get overwritten to 

match leader’s log
• Majority restriction + up-to-date-

check: committed entries never get 
overwritten



Bitcoin / Blockchain

Designed for log consensus among 
large-scale, dynamic groups
Transaction ordering:
• Group transactions into blocks
• Chain blocks using hash 

functions
Gossip-based broadcast
• Transactions / blocks gossiped to 

random neighbors
• Viral spread across the network

Block creation:
• Decentralized “leader election” 

by solving verifiable puzzle
• Difficulty tuned to limit block 

creation rate
• Chain split / forks possible, but 

long-lived forks unlikely
• k-deep transactions are 

considered committed
• E.g., k=6


