
DHT (continued)
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Recap

• Nodes arranged in a ring with positions 
labeled 0..2m-1
• m = 128, 160, 256

• A node’s position is based on a hash of its
identity
• P(collision among N nodes) =~ 1-e-n(n-1)/2^(m+1)

• For m=128, N=1,000,000,000, this is ~= 
0.000000000000000000001469…
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Recap

• Nodes arranged in a ring with positions 
labeled 0..2m-1
• A node’s position is based on a hash of

its identity
• A key x is stored at node with first 

position greater than x on the ring
• Each node stores approximately 1/N of all 

keys
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Recap

• Nodes arranged in a ring with positions 
labeled 0..2m-1
• A node’s position is based on a hash of

its identity
• A key x is stored at node with first 

position greater than x on the ring
• A node’s fingers are based on id + 2i

(mod 2m) for i = 0, ..., m-1
• Up to m fingers, though only O(log N) 

distinct on average
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Recap

• Nodes arranged in a ring with positions 
labeled 0..2m-1
• A node’s position is based on a hash of its

identity
• A key x is stored at node with first position 

greater than x on the ring
• A node’s fingers are based on id + 2i (mod 

2m) for i = 0, ..., m-1
• Search for key x proceeds by using largest 

finger that makes progress towards key
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Analysis
Search takes O(log(N)) time

Proof  
• (intuition): at each step, distance between query and peer-

with-file reduces by a factor of at least 2 (why?)
Takes at most m steps: 2m is at most a constant multiplicative 
factor above N, lookup is O(log(N))

• (intuition): after log(N) forwardings, distance to key is at 
most  2m / N  (why?)
Number of node identifiers in a range of 2m / N
is O(log(N)) with high probability (why?)
So using successors in that range will be ok

Here

Next hop

Key



Analysis (contd.)

• O(log(N)) search time holds for file insertions too (in general for 
routing to any key)
• “Routing” can thus be used as a building block for

• All operations: insert, lookup, delete

• O(log(N)) time true only if finger and successor entries correct
• When might these entries be wrong?

• When you have failures
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Search under peer failures
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Search under peer failures
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Search under peer failures (2)
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Search under peer failures (2)
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Need to deal with dynamic changes
üPeers fail
• New peers join
• Peers leave

• P2P systems have a high rate of churn (node join, leave and failure)

à Need to update successors and fingers, and copy keys
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New peers joining

N80

0Say m=7

N32

N45

N112

N96

N16

N40

Introducer directs N40 to N45 (and N32)
N32 updates successor to N40
N40 initializes successor to N45, and inits fingers from it
N40 periodically talks to its neighbors to update finger table

Stabilization 
Protocol
(to allow for
“continuous”
churn,
multiple
changes)



Lookups
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Chord Protocol: Summary

• O(log(N)) memory and lookup costs

• Hashing to distribute filenames uniformly across key/address space

• Allows dynamic addition/deletion of nodes
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DHT Deployment

• Many DHT designs
• Chord, Pastry, Tapestry, Koorde, CAN, Viceroy, Kelips, Kademlia, …

• Slow adoption in real world
• Most real-world P2P systems unstructured

• No guarantees
• Controlled flooding for routing

• Kademlia slowly made inroads, now used in many file sharing networks

• Distributed key-value stores adopt some of the ideas of DHTs
• Dynamo, Cassandra, etc. 
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