
DHT (continued)

2019-03-27



Recap

• Nodes arranged in a ring with positions 
labeled 0..2m-1
• m = 128, 160, 256

• A node’s position is based on a hash of its
identity
• P(collision among N nodes) =~ 1-e-n(n-1)/2^(m+1)

• For m=128, N=1,000,000,000, this is ~= 
0.000000000000000000001469…

2019-03-27

N80

N112

N96

N16
0

N32

N45

m=7



Recap

• Nodes arranged in a ring with positions 
labeled 0..2m-1
• A node’s position is based on a hash of

its identity
• A key x is stored at node with first 

position greater than x on the ring
• Each node stores approximately 1/N of all 

keys

2019-03-27

N80

N112

N96

N16
0

N32

N45

m=7

File cnn.com/index.html with 
key K42 stored here



Recap

• Nodes arranged in a ring with positions 
labeled 0..2m-1
• A node’s position is based on a hash of

its identity
• A key x is stored at node with first 

position greater than x on the ring
• A node’s fingers are based on id + 2i

(mod 2m) for i = 0, ..., m-1
• Up to m fingers, though only O(log N) 

distinct on average

2019-03-27

N80

N112

N96

N16
0

N32

N45

m=7

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25



Recap

• Nodes arranged in a ring with positions 
labeled 0..2m-1
• A node’s position is based on a hash of its

identity
• A key x is stored at node with first position 

greater than x on the ring
• A node’s fingers are based on id + 2i (mod 

2m) for i = 0, ..., m-1
• Search for key x proceeds by using largest 

finger that makes progress towards key

2019-03-27

N80

N112

N96

N16
0

N32

N45

m=7



2019-03-27

Analysis
Search takes O(log(N)) time

Proof  
• (intuition): at each step, distance between query and peer-

with-file reduces by a factor of at least 2 (why?)
Takes at most m steps: 2m is at most a constant multiplicative 
factor above N, lookup is O(log(N))

• (intuition): after log(N) forwardings, distance to key is at 
most  2m / N  (why?)
Number of node identifiers in a range of 2m / N
is O(log(N)) with high probability (why?)
So using successors in that range will be ok

Here

Next hop

Key



Analysis (contd.)

• O(log(N)) search time holds for file insertions too (in general for 
routing to any key)
• “Routing” can thus be used as a building block for

• All operations: insert, lookup, delete

• O(log(N)) time true only if finger and successor entries correct
• When might these entries be wrong?

• When you have failures

2019-03-27



Search under peer failures

2019-03-27

N80

0Say m=7

N32

N45

File cnn.com/index.html with 
key K42 stored here

X
X

X

Lookup fails 
(N16 does not know N45)

N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)



Search under peer failures

2019-03-27

N80

0Say m=7

N32

N45

File cnn.com/index.html with 
key K42 stored here

X

One solution: maintain r multiple successor entries
In case of failure, use successor entries

N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)



Search under peer failures (2)

2019-03-27

N80

0Say m=7

N32

N45

File cnn.com/index.html with 
key K42 stored here

X
X

Lookup fails 
(N45 is dead)

N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)



2019-03-27

Search under peer failures (2)

N80

0Say m=7

N32

N45

File cnn.com/index.html with 
key K42 stored here

X

One solution: replicate file/key at r successors and 
predecessors

N112

N96

N16

K42 replicated

K42 replicated

Who has cnn.com/index.html?
(hashes to K42)



Need to deal with dynamic changes
üPeers fail
• New peers join
• Peers leave

• P2P systems have a high rate of churn (node join, leave and failure)

à Need to update successors and fingers, and copy keys

2019-03-27



2019-03-27

New peers joining

N80

0Say m=7

N32

N45

N112

N96

N16

N40

Introducer directs N40 to N45 (and N32)
N32 updates successor to N40
N40 initializes successor to N45, and inits fingers from it



2019-03-27

New peers joining

N80

0Say m=7

N32

N45

N112

N96

N16

N40

Introducer directs N40 to N45 (and N32)
N32 updates successor to N40
N40 initializes successor to N45, and inits fingers from it
N40 periodically talks to its neighbors to update finger table

Stabilization 
Protocol
(to allow for
“continuous”
churn,
multiple
changes)



Lookups

2019-03-27

Av
er

ag
e 

M
es

sa
ge

s 
pe

r L
oo

ku
p

Number of Nodes
log N, as expected



Chord Protocol: Summary

• O(log(N)) memory and lookup costs

• Hashing to distribute filenames uniformly across key/address space

• Allows dynamic addition/deletion of nodes

2019-03-27



DHT Deployment

• Many DHT designs
• Chord, Pastry, Tapestry, Koorde, CAN, Viceroy, Kelips, Kademlia, …

• Slow adoption in real world
• Most real-world P2P systems unstructured

• No guarantees
• Controlled flooding for routing

• Kademlia slowly made inroads, now used in many file sharing networks

• Distributed key-value stores adopt some of the ideas of DHTs
• Dynamo, Cassandra, etc. 

2019-03-27


