RAFT continued

Distributed Systems
Nikita Borisov

Slide content borrowed from Diego Ongaro, John Ousterhout, and Alberto
Montresor

The distributed log (!)

* Each server stores a log containing commands

* Consensus algorithm ensures that all logs contain the same
commands in the same order

e State machines always execute commands
in the log order

* They will remain consistent as long as command executions have
deterministic results

The distributed log (1)

‘ Client |h

@

Consensus

Module

®\

Log

State Machine

K3

The distributed log (llI)

* Client sends a command to one of the servers
* Server adds the command to its log
* Server forwards the new log entry to the other servers

* Once a consensus has been reached, each server state machine
process the command and sends it reply to the client

Raft consensus algorithm (I)

* Servers start by electing a leader
* Sole server habilitated to accept commands from clients
* Will enter them in its log and forward them to other servers
* Will tell them when it is safe to apply these log entries to their state machines

Raft consensus algorithm (I1)

* Decomposes the problem into three fairly independent subproblems
* Leader election:
How servers will pick a—single—leader
* Log replication:
How the leader will accept log entries from clients, propagate them to the
other servers and ensure their logs remain in a consistent state
* Safety

Raft leader election

* Election timeout
* Used by nodes in state
e Reset at every (heartbeat) and (election)

e Randomized between 150 and 300 ms

* A timeout triggers transition to state
* Increment current

* Vote for self
* Send messages to all other nodes

* When receiving , vote for requestor if and only if not
voted for anyone else in the requested

Election Logic

Election timeout

currentTerm += 1
state = Candidate
votedFor = me

send(RequestVote(who=me,
term=currentTerm))

Receive RequestVote(who, term)

if currentTerm < term:

currentTerm = term
state = Follower
votedFor = who
reply(currentTerm, True)
resetTimeout ()

reply(currentTerm, False)

Candidate logic

1. Receive majority of votes

* Transition to state,
e Send to all nodes

2. Receive from another leader
* Transition to state

3. Receive no vote with larger term #

* Update term
* Transition to state
 Wait for or timeout

4. Election timeout expires with no majority
* Increment term, start new election

State machine

times out, receives votes from
startsup timesout, new election iy of Servers
starts election O jority

Fo//ower) @andldata (Leader)

discovers server
with higher term

discovers current
leader or new term

Raft properties

1. At most one leader elected per
term

Why?

 Each node votes for at most one
leader in a term

* (strict) majority needed for
election

Leader election and FLP

* |s totally correct leader election possible in async systems?
* No! Leader election equivalent to consensus

* How is leader election in Raft not totally correct?

* Split elections

Avoiding split elections

e Raft uses randomized election timeouts
* Chosen randomly from a fixed interval

* Increases the chances that a single follower will detect the loss of the
leader before the others

Example

Follower A

Timeouts

Follower B

Leader X Last heartbeat

Log replication

* Leaders
* Accept client commands
* Append them to their log (new entry)
* Issue AppendEntry RPCs in parallel to all followers

* Apply the entry to their state machine once it has been safely replicated
* Entry is then committed

A client sends a request

|

State
machine

I

State
machine

I

 Leader stores request on its log and forwards it to its

followers

>
L Log
[T T T
.

)l

State
machine

I

The followers receive the request
)
[State }
machine
J
o AN

(. O) R O)
L 4
Loqy State . Log State
_‘ machine _ machine
_ v, v,

* Followers store the request on their logs and
acknowledge its receipt

The leader tallies followers' ACKs

()
——>[Log } [‘}
.)

o AR (N

§
Log“ State "4, Log State
1@] machine CoT 1 machine
U

v v

* Once it ascertains the request has been processed by
a majority of the servers, it updates its state machine

The leader tallies followers' ACKs

e . O)

og ® state
_é L—.j [machine }
\e =P v,

(O) (O)
[Log } L.State } [Log } {‘State }
_ machine _ machine

\ J \ J

* Leader's heartbeats convey the news to its followers:
they update their state machines

AppendEntries processing

e AppendEntries contains * |If needed, update current term and set state
* Leader’s term to
* Leader’s identity * If current term > leader term, inform leader
instead

* Index of last previousl|
broadcast enEc)ry Yo Check if prevLogIindex matches, and

(prevLogindex) reconcile if it doesn’t
* Followers update their logs to match leader

* Index of last committed N
* Handles lost heartbeats, recovery from partition

entry (leaderCommit)
e New entries * Update own commit index

 Add new entries
* Acknowledge

Raft properties

1. At most one leader elected per
term

2. Log entries for a term are
prefixes of the leader
Why?

3. Committed log entries are
replicated to majority of nodes

Which entries might be committed?

1 2 3 4 5 6 7 8
1 1 1 2 3 3 3 3
xe3|lyel|lye9|xe2 | xe<0|yeT | x5 x4

1 1 1 2 3
X3 |lyel|ly«9|x<2|x<0
1 1 1 2 3 3 <) 3
Xe3|yel|lye9|xe2 | xe0|yeT | x5 x4
1 1
xe3|ye1l
1 1 1 2 3 3 3
Xe3|yel|lye9|xe2 X0 |yeT | x5

log index

leader

> followers

Log reconciliation

1 2 3 4 5 6 7 8 9101112 log index
How could (f) happen?

1[1[1]4[4]5][5]6]6]6 eadsr 17 o {f) leader for term 2
(new term) * Appends 3 [2] entries
(a) [1{1[{14|4|5/5|6|0 A without committing
* Crashes, recovers, gets
bl [1]1]1]4 elected leader for term 3
ey [1l111l4alals|s|l6|6|l6]6 bl * Appends 5 [3] entries
>» Ffiif;:*m?a without committing
) 1111|4145 5|6(6|6| |/ '
e} [1({1(1(414|4|4
(1] 1|1{2]|2|2(3|3|3|3|3 J

The new leader is in charge
1 D) V)
Log State State
T T machine machine
X J

* Newly elected candidate forces all its followers to
duplicate in their logs the contents of its own log

-

* Conflicting log entries are overwritten

Raft properties

1. At mostoneleaderelectedper 1 2 3 4 5 6 7 &8 log index
term 11123 [3][3]3
] xe3|lyel|lye9|xe2 | xe<0|yeT | x5 x4 leader
2. Log entries fera-term-of any \
follower are prefixes of the 3 yil yig o [
leader 13 1 19 22 30 37 35 34
. . “ «]1|ye “ “ “ “ “
3. Committed log entries are e e S > followers
replicated to majority of nodes | 25,2,
1 1 1 2 3 3 3
Xe3|yel|lye9|xe2 X0 |yeT | x5)

Safety

* Two main issues

* What if the log of a new leader did not contain all previously
committed entries?

* Must impose conditions on new leaders
* How to commit entries from a previous term?
* Must tune the commit mechanism

Election restriction (I)

* The log of any new leader must contain all previously committed
entries

* Candidates include in their RequestVote RPCs information about the state of
their log

» Before voting for a candidate, servers check that the log of the candidate is at
least as up to date as their own log

* Majority rule does the rest

Election restriction

Receive RequestVote(who, term, log)

if currentTerm < term and |

else:

upToDate(log):
currentTerm = term
state =

votedFor = who
reply(currentTerm, True)
resetTimeout ()

reply(currentTerm, False)

upToDate(log):

logTerm = log[-1].term

myTerm = self.log[-1].term

if logTerm > myTerm:
return True

if logTerm == myTerm and \

len(log) >= len(self.log):

return True

return False

Election Restriction

1 2 3 4 5 6 7 8 9 101112 log Index

111/1]4]4|5|5[6|6[6 eader for
@ [1[1]1]4]4][5]5]6]6 A
w) [1]1]1]4
« [1]1]1]4]4[5]5]6[6]6]6 Mmihle
) [1]1[1]4[4[5]5]6[6]6]7]7| [™'owers
e} [1({1(1(4|14|4|4
0 [1[1]1[2]2]2]3[3[3[3[3] |

Election restriction (I1)

Two majorities of the same cluster must intersect

Raft properties

1. At most one leader elected per
term

2. Log entries of any follower are
prefixes of the leader

3. Committed log entries are
replicated to majority of nodes

4. Current leader’s log contains
all committed entries

Committing entries from a previous term

* A leader cannot immediately conclude that an entry from a previous
term is committed even if it is stored on a majority of servers.
* See next figure

 Leader should never commit log entries from previous terms by
counting replicas

e Should only do it for entries from the current term

* Once it has been able to do that for one entry, all prior entries are
committed indirectly

Committing entries from a previous term

2

1

2

1

2

1

1 2

S1 |1]2]
1|2
1
1
1

1 2;’_4_

1{3

- - - - -

13

1]2
12|

1

13

1|2
1|2
1
1

S2
S3
S4
S5

(e)

(d)

(c)

(b)

(a)

Explanations

* In (a) S1 is leader and partially replicates the log entry at index 2.

* In (b) S1 crashes; S5 is elected leader for term 3 with votes from S3,
S4, and itself, and accepts a different entry at log index 2.

* In (c) S5 crashes; S1 restarts, is elected leader, and continues
replication.

* Log entry from term 2 has been replicated on a majority of the servers, but it
is not committed.

Explanations

e [f S1 crashes as in (d), S5 could be elected leader (with votes from S2,
S3, and S4) and overwrite the entry with its own entry from term 3.

* However, if S1 replicates an entry from its current term on a majority
of the servers before crashing, as in (e), then this entry is committed
(S5 cannot win an election).

* At this point all preceding entries in the log are committed as well.

Cluster membership changes

* Not possible to do an atomic switch
* Changing the membership of all servers at one

* Will use a two-phase approach:
* Switch first to a transitional joint consensus configuration

* Once the joint consensus has been committed, transition to the new
configuration

The joint consensus configuration

* Log entries are transmitted to all servers, old and new
e Any server can act as leader

* Agreements for entry commitment and elections requires majorities
from both old and new configurations

* Cluster configurations are stored and replicated in special log entries

The joint consensus configuration
Cold

Server 1 D
Server 2 D

Server 3
Server 4
Server 5

time
problem: two
disjoint majorities

Implementations

* Two thousand lines of C++ code, not including tests, comments, or
blank lines.

e About 25 independent third-party open source implementations in
various stages of development

* Some commercial implementations

