
RAFT continued
Distributed Systems

Nikita Borisov

Slide content borrowed from Diego Ongaro, John Ousterhout, and Alberto
Montresor

The distributed log (I)

• Each server stores a log containing commands
• Consensus algorithm ensures that all logs contain the same

commands in the same order
• State machines always execute commands

in the log order
• They will remain consistent as long as command executions have

deterministic results

The distributed log (II)

The distributed log (III)

• Client sends a command to one of the servers
• Server adds the command to its log
• Server forwards the new log entry to the other servers
• Once a consensus has been reached, each server state machine

process the command and sends it reply to the client

Raft consensus algorithm (I)

• Servers start by electing a leader
• Sole server habilitated to accept commands from clients
• Will enter them in its log and forward them to other servers
• Will tell them when it is safe to apply these log entries to their state machines

Raft consensus algorithm (II)

• Decomposes the problem into three fairly independent subproblems
• Leader election:

How servers will pick a—single—leader
• Log replication:

How the leader will accept log entries from clients, propagate them to the
other servers and ensure their logs remain in a consistent state

• Safety

Raft leader election

• Election timeout
• Used by nodes in Follower state
• Reset at every AppendEntries (heartbeat) and RequestVote (election)
• Randomized between 150 and 300 ms

• A timeout triggers transition to Candidate state
• Increment current term
• Vote for self
• Send RequestVote messages to all other nodes

• When receiving RequestVote, vote for requestor if and only if not
voted for anyone else in the requested term

Election Logic

Election timeout

currentTerm += 1
state = Candidate
votedFor = me
send(RequestVote(who=me,

term=currentTerm))

Receive RequestVote(who, term)

if currentTerm < term:
currentTerm = term
state = Follower
votedFor = who
reply(currentTerm, True)
resetTimeout()

else:
reply(currentTerm, False)

Candidate logic

1. Receive majority of votes
• Transition to Leader state,
• Send AppendEntries to all nodes

2. Receive AppendEntries from another leader
• Transition to Follower state

3. Receive no vote with larger term #
• Update term
• Transition to Follower state
• Wait for AppendEntries or timeout

4. Election timeout expires with no majority
• Increment term, start new election

State machine

Election Safety: at most one leader can be elected in a

given term. §5.2

Leader Append-Only: a leader never overwrites or deletes

entries in its log; it only appends new entries. §5.3

Log Matching: if two logs contain an entry with the same

index and term, then the logs are identical in all entries

up through the given index. §5.3

Leader Completeness: if a log entry is committed in a

given term, then that entry will be present in the logs

of the leaders for all higher-numbered terms. §5.4

State Machine Safety: if a server has applied a log entry

at a given index to its state machine, no other server

will ever apply a different log entry for the same index.

§5.4.3

Figure 3: Raft guarantees that each of these properties is true

at all times. The section numbers indicate where each prop-

erty is discussed.

from clients and replicate them across the cluster,
forcing the other logs to agree with its own (Sec-
tion 5.3).

• Safety: the key safety property for Raft is the State
Machine Safety Property in Figure 3: if any server
has applied a particular log entry to its state machine,
then no other server may apply a different command
for the same log index. Section 5.4 describes how
Raft ensures this property; the solution involves an
additional restriction on the election mechanism de-
scribed in Section 5.2.

After presenting the consensus algorithm, this section dis-
cusses the issue of availability and the role of timing in the
system.

5.1 Raft basics

A Raft cluster contains several servers; five is a typical
number, which allows the system to tolerate two failures.
At any given time each server is in one of three states:
leader, follower, or candidate. In normal operation there
is exactly one leader and all of the other servers are fol-
lowers. Followers are passive: they issue no requests on
their own but simply respond to requests from leaders
and candidates. The leader handles all client requests (if
a client contacts a follower, the follower redirects it to the
leader). The third state, candidate, is used to elect a new
leader as described in Section 5.2. Figure 4 shows the
states and their transitions; the transitions are discussed
below.

Raft divides time into terms of arbitrary length, as
shown in Figure 5. Terms are numbered with consecutive
integers. Each term begins with an election, in which one
or more candidates attempt to become leader as described
in Section 5.2. If a candidate wins the election, then it
serves as leader for the rest of the term. In some situations
an election will result in a split vote. In this case the term
will end with no leader; a new term (with a new election)

Figure 4: Server states. Followers only respond to requests

from other servers. If a follower receives no communication,

it becomes a candidate and initiates an election. A candidate

that receives votes from a majority of the full cluster becomes

the new leader. Leaders typically operate until they fail.

Figure 5: Time is divided into terms, and each term begins

with an election. After a successful election, a single leader

manages the cluster until the end of the term. Some elections

fail, in which case the term ends without choosing a leader.

The transitions between terms may be observed at different

times on different servers.

will begin shortly. Raft ensures that there is at most one
leader in a given term.

Different servers may observe the transitions between
terms at different times, and in some situations a server
may not observe an election or even entire terms. Terms
act as a logical clock [14] in Raft, and they allow servers
to detect obsolete information such as stale leaders. Each
server stores a current term number, which increases
monotonically over time. Current terms are exchanged
whenever servers communicate; if one server’s current
term is smaller than the other’s, then it updates its current
term to the larger value. If a candidate or leader discovers
that its term is out of date, it immediately reverts to fol-
lower state. If a server receives a request with a stale term
number, it rejects the request.

Raft servers communicate using remote procedure calls
(RPCs), and the basic consensus algorithm requires only
two types of RPCs. RequestVote RPCs are initiated by
candidates during elections (Section 5.2), and Append-
Entries RPCs are initiated by leaders to replicate log en-
tries and to provide a form of heartbeat (Section 5.3). Sec-
tion 7 adds a third RPC for transferring snapshots between
servers. Servers retry RPCs if they do not receive a re-
sponse in a timely manner, and they issue RPCs in parallel
for best performance.

5.2 Leader election

Raft uses a heartbeat mechanism to trigger leader elec-
tion. When servers start up, they begin as followers. A
server remains in follower state as long as it receives valid

5

Raft properties

1. At most one leader elected per
term

Why?
• Each node votes for at most one

leader in a term
• (strict) majority needed for

election

Leader election and FLP

• Is totally correct leader election possible in async systems?

• No! Leader election equivalent to consensus

• How is leader election in Raft not totally correct?

• Split elections

Avoiding split elections

• Raft uses randomized election timeouts
• Chosen randomly from a fixed interval

• Increases the chances that a single follower will detect the loss of the
leader before the others

Example

Follower A

Follower B

Leader
Last heartbeatX

Timeouts

Follower with the shortest timeout
becomes the new leader

Log replication

• Leaders
• Accept client commands
• Append them to their log (new entry)
• Issue AppendEntry RPCs in parallel to all followers
• Apply the entry to their state machine once it has been safely replicated

• Entry is then committed

A client sends a request

• Leader stores request on its log and forwards it to its
followers

State
machine

Log
Client

State
machine

Log State
machine

Log

The followers receive the request

• Followers store the request on their logs and
acknowledge its receipt

State
machine

Log
Client

State
machine

Log State
machine

Log

The leader tallies followers' ACKs

• Once it ascertains the request has been processed by
a majority of the servers, it updates its state machine

State
machine

Log
Client

State
machine

Log State
machine

Log

The leader tallies followers' ACKs

• Leader's heartbeats convey the news to its followers:
they update their state machines

State
machine

Log
Client

State
machine

Log State
machine

Log

AppendEntries processing

• AppendEntries contains
• Leader’s term
• Leader’s identity
• Index of last previously

broadcast entry
(prevLogIndex)
• Index of last committed

entry (leaderCommit)
• New entries

• If needed, update current term and set state
to Follower
• If current term > leader term, inform leader

instead
• Check if prevLogIndex matches, and

reconcile if it doesn’t
• Followers update their logs to match leader
• Handles lost heartbeats, recovery from partition

• Update own commit index
• Add new entries
• Acknowledge

Raft properties

1. At most one leader elected per
term

2. Log entries for a term are
prefixes of the leader
Why?

3. Committed log entries are
replicated to majority of nodes
Which entries might be committed?

Log reconciliation

(new term)

How could (f) happen?
• (f) leader for term 2
• Appends 3 [2] entries

without committing
• Crashes, recovers, gets

elected leader for term 3
• Appends 5 [3] entries

without committing

The new leader is in charge

• Newly elected candidate forces all its followers to
duplicate in their logs the contents of its own log

• Conflicting log entries are overwritten

State
machine

Log State
machine

Log

Raft properties

1. At most one leader elected per
term

2. Log entries for a term of any
follower are prefixes of the
leader

3. Committed log entries are
replicated to majority of nodes

Safety

• Two main issues
• What if the log of a new leader did not contain all previously

committed entries?
• Must impose conditions on new leaders

• How to commit entries from a previous term?
• Must tune the commit mechanism

Election restriction (I)

• The log of any new leader must contain all previously committed
entries
• Candidates include in their RequestVote RPCs information about the state of

their log
• Before voting for a candidate, servers check that the log of the candidate is at

least as up to date as their own log
• Majority rule does the rest

Election restriction

Receive RequestVote(who, term, log)

if currentTerm < term and \
upToDate(log):
currentTerm = term
state = Follower
votedFor = who
reply(currentTerm, True)
resetTimeout()

else:
reply(currentTerm, False)

upToDate(log):
logTerm = log[-1].term
myTerm = self.log[-1].term
if logTerm > myTerm:

return True
if logTerm == myTerm and \

len(log) >= len(self.log):
return True

return False

Election Restriction

Election restriction (II)

Servers holding
the last committed

log entry

Servers having
elected the
new leader

Two majorities of the same cluster must intersect

Raft properties

1. At most one leader elected per
term

2. Log entries of any follower are
prefixes of the leader

3. Committed log entries are
replicated to majority of nodes

4. Current leader’s log contains
all committed entries

Committing entries from a previous term

• A leader cannot immediately conclude that an entry from a previous
term is committed even if it is stored on a majority of servers.
• See next figure

• Leader should never commit log entries from previous terms by
counting replicas

• Should only do it for entries from the current term
• Once it has been able to do that for one entry, all prior entries are

committed indirectly

Committing entries from a previous term

Explanations

• In (a) S1 is leader and partially replicates the log entry at index 2.
• In (b) S1 crashes; S5 is elected leader for term 3 with votes from S3,

S4, and itself, and accepts a different entry at log index 2.
• In (c) S5 crashes; S1 restarts, is elected leader, and continues

replication.
• Log entry from term 2 has been replicated on a majority of the servers, but it

is not committed.

Explanations

• If S1 crashes as in (d), S5 could be elected leader (with votes from S2,
S3, and S4) and overwrite the entry with its own entry from term 3.

• However, if S1 replicates an entry from its current term on a majority
of the servers before crashing, as in (e), then this entry is committed
(S5 cannot win an election).

• At this point all preceding entries in the log are committed as well.

Cluster membership changes

• Not possible to do an atomic switch
• Changing the membership of all servers at one

• Will use a two-phase approach:
• Switch first to a transitional joint consensus configuration
• Once the joint consensus has been committed, transition to the new

configuration

The joint consensus configuration

• Log entries are transmitted to all servers, old and new
• Any server can act as leader
• Agreements for entry commitment and elections requires majorities

from both old and new configurations
• Cluster configurations are stored and replicated in special log entries

The joint consensus configuration

Implementations

• Two thousand lines of C++ code, not including tests, comments, or
blank lines.

• About 25 independent third-party open source implementations in
various stages of development

• Some commercial implementations

