
Bitcoin & RAFT
Distributed Systems

Nikita Borisov

Topics for Today

• Finish Bitcoin
• Broadcast mechanism

• Overview of MP2
• Raft consensus

Bitcoin broadcast

• Need to broadcast:
• Transactions to all nodes, so they can be included in a block
• New blocks to all nodes, so that they can switch to longest chain

• Why not R-multicast?
• Have to send O(N) messages
• Have to know which nodes to send to

Gossip / Viral propagation

• Each node connects to a small set of neighbors
• 10–100

• Nodes propagate transactions and blocks to neighbors

• Push method: when you hear a new tx/block, resend them to all
(some) of your neighbors (flooding)

• Pull method: periodically poll neighbors for list of blocks/tx’s, then
request any you are missing

Push propagation

tx

tx

tx

tx

tx
X

Pull propagation

Node 1 Node 2

What transactions do you know?

Tx1, tx7, tx13, tx25, tx28

Please send me tx13, tx28

Contents of tx13, tx28

Maintaining Neighbors

• A seed service
• Gives out a list of random or well-

connected nodes
• E.g., seed.bitnodes.io

• Neighbor discovery
• Ask neighbors about their

neighbors
• Randomly connect to some of

them

MP2: Cryptocurrency

Implement a simple blockchain/cryptocurrency application
• Build a network of nodes
• Broadcast transactions
• “Mine” and broadcast blocks
• Validate blocks and enforce longest-chain rule

MP2 service

A network service to help with various aspects of the MP
• Introduce nodes to each other
• Generates transactions
• Simulates proof of work
• Tells nodes when to die

Part 1: Transaction broadcast

Node 1

Service
CONNECT node1 172.22.156.2 4444

INTRODUCE node2 172.22.156.3 4567
INTRODUCE node7 172.22.156.99 8888
INTRODUCE node12 172.22.156.12 4444

Node 2 Node 7

Node 12

Part 1: Transaction broadcast

Node 1

Service
TRANSACTION 1551208414.204385
f78480653bf33e3fd700
ee8fae89d53064c8dfa6 183 99 10

Node 2 Node 7

Node 12
Tx f784…

Tx f784…

Tx f784…

Tasks

• Maintain connectivity
• As new nodes arrive
• As existing nodes die

• Propagate transactions to all nodes
• Collect metrics

• Transaction propagation delay
• Aggregate bandwidth

• No efficiency target, but bonus marks for high performance!

Part 2: Block creation and propagation

• Accumulate transactions into blocks
• Enforce ordering
• Prevent double-spending

• Use service to “solve” puzzles
• Propagate blocks to other nodes
• Import and verify blocks
• Resolve chain forks

Node Architecture

Service

Pending
Transactions
(mempool)

tx from service

Tx from neighbors

Current blockchain

Validated
Transactions

Tentative Block

Prev Hash

SOLVE

Hash

Update Tentative Block

Service

Pending
Transactions
(mempool)

tx from service

Tx from neighbors

Current blockchain

Validated
Transactions

Tentative Block

Prev Hash

SOLVE

Hash

New tx

Validated
Transactions

Solve Puzzle

Service

Pending
Transactions
(mempool)

tx from service

Tx from neighbors

Current blockchain

Validated
Transactions

Tentative Block

Prev Hash

SOLVED

Solution

New block from neighbor

Service

Pending
Transactions
(mempool)

tx from service

Tx from neighbors

Current blockchain

Validated
Transactions

Tentative Block

Prev Hash

SOLVE

Hash

New block

Filter
Confirmed
transactions

RAFT Consensus
Slide content borrowed from Diego Ongaro, John Ousterhout, and

Alberto Montresor

Log Consensus

• Bit consensus: agree on a single bit, based on inputs
• (0,1,0,0,1,0,0) -> 1

• Log consensus: agree on contents and order of events in a log
• {A, B, Q, R, W, Z} -> [A, Q, R, B, Z]

Log-based

• Each replica maintains a log of events (from client(s))

• Replicas apply events in the log to update their state

• Same initial state + same order of events in the log => consistent final
state

Log Consensus

• All replicas must agree on the order of events in the log
• Is this possible in asynchronous systems?

Log Consensus

• All replicas must agree on the order of events in the log
• Is this possible in asynchronous systems?

• Totally correct implementation impossible (FLP)!

• Safety
• Replicas always add events in consistent order

• Liveness
• If a majority of nodes is available, they will eventually establish consistent log

order
• Available = not failed, and not delayed beyond a bound

The distributed log (I)

• Each server stores a log containing commands
• Consensus algorithm ensures that all logs contain the same

commands in the same order
• State machines always execute commands

in the log order
• They will remain consistent as long as command executions have

deterministic results

The distributed log (II)

The distributed log (III)

• Client sends a command to one of the servers
• Server adds the command to its log
• Server forwards the new log entry to the other servers
• Once a consensus has been reached, each server state machine

process the command and sends it reply to the client

Paxos

Recent archaeological discoveries on the island of Paxos reveal that the
parliament functioned despite the peripatetic propensity of its part-
time legislators. The legislators maintained consistent copies of the
parliamentary record, despite their frequent forays from the chamber
and the forgetfulness of their messengers. The Paxon parliament’s
protocol provides a new way of implementing the state-machine
approach to the design of distributed systems — an approach that has
received limited attention because it leads to designs of insufficient
complexity.

Paxos Timeline

• 1989: Lamport wrote 42 page (!) DEC technical report
• 1990: Submitted to and rejected from ACM Transactions on

Computer Systems
• 1998: The original paper is resubmitted and accepted by TOCS.
• 2001 Lamport publishes “Paxos made simple” in ACM SIGACT News
• 2007 T. D. Chandra, R. Griesemer, J. Redstone. Paxos made live: an

engineering perspective. PODC 2007, Portland, Oregon.

Paxos

• Google uses the Paxos algorithm in their Chubby distributed lock
service. Chubby is used by BigTable, which is now in production in
Google Analytics and other products

• Amazon Web Services uses the Paxos algorithm extensively to power
its platform

• Windows Fabric, used by many of the Azure services, make use of the
Paxos algorithm for replication between nodes in a cluster

• Neo4j HA graph database implements Paxos, replacing Apache
ZooKeeper used in previous versions.

• Apache Mesos uses Paxos algorithm for its replicated log coordination

Paxos limitations (I)

• Exceptionally difficult to understand

“The dirty little secret of the NSDI* community is that at most five people really,
truly understand every part of Paxos ;-).”
– Anonymous NSDI reviewer

*The USENIX Symposium on Networked Systems
Design and Implementation

Paxos limitations (II)

• Very difficult to implement

“There are significant gaps between the description of the Paxos algorithm and
the needs of a real-world system…the final system will be based on an
unproven protocol.” – Chubby authors

Designing for understandability

• Main objective of RAFT
• Whenever possible, select the alternative that is the easiest to understand

• Techniques that were used include
• Dividing problems into smaller problems
• Reducing the number of system states to consider

• Could logs have holes in them? No

Raft consensus algorithm (I)

• Servers start by electing a leader
• Sole server habilitated to accept commands from clients
• Will enter them in its log and forward them to other servers
• Will tell them when it is safe to apply these log entries to their state machines

Raft consensus algorithm (II)

• Decomposes the problem into three fairly independent subproblems
• Leader election:

How servers will pick a—single—leader
• Log replication:

How the leader will accept log entries from clients, propagate them to the
other servers and ensure their logs remain in a consistent state

• Safety

