
Bitcoin and Nakamoto
Consensus

Distributed Systems, Spring 2020
Nikita Borisov

Topics for Today

• Replicated State Machines and Log Consensus
• Bitcoin
• Consensus approach
• Transaction broadcast

• MP2 overview

Announcements

• Midterm grades are out: med 52, mean 52.7, STD 6.73 (out of 70)
• Regrades are due by 11pm on Mar 25th

• Solution will be released today/tomorrow

• MP2 out today
• Due on April 13

• HW3 extended till Monday 16
• HW4 out Friday, due April 2
• No extensions

• Midterm 2 on April 6

State Machine

• A process with some state
that responds to events

X: 0
Set X=7

X: 7
Set X=5 X: 5

Banks

• State: account balances
• Alice: $100
• Bob: $200
• Charlie: $50

• Events: transactions
• Alice pays Bob $20
• Charlie pays Alice $50
• Charlie pays Bob $50

Databases (e.g., enrollment)

• State: database tables
• Classes:

• Alice: CS425, CS438
• Bob: CS425, CS411
• Charlie: ECE428, ECE445

• Rooms:
• CS425: DCL1320
• ECE445: ECEB3013

• Events: transactions
• Alice drops CS425
• Bob switches to 3 credits
• Charlie signs up for CS438
• ECE445 moves to ECEB1013

Filesystems

• State: all files on the system
• Midterm.tex
• HW2-solutions.tex
• Assignments.html

• Events: updates
• Save midterm solutions to

midterm-solutions.tex
• Append MP2 to Assignments.html
• Delete exam-draft.tex

State machines

• State: complete state of a
program

• Events: messages received

• Assumption: all state machines
deterministic

Replicated state machines

X: 0
Set X=7

X: 7
Set X=5 X: 5

X: 0

Set X=7

X: 7
Set X=5

X: 5

Replicated State Machines

• A state machine can fail, taking the state with it

• Replicate for
• Availability — can continue operation even if one SM fails
• Durability — data is not lost

• Must ensure:
• Consistency!

Consistency

X: 0
Set X=7

X: 7
Set X=5 X: 5

X: 0

Set X=7
Set X=5

X: 5X: 7

Consistency Requirement

All state machines must process
• The same set of events
• R-multicast

• In the same order
• Total ordering

Other requirements
• Same initial state
• Deterministic execution

Log Consensus

• Reliable, totally-ordered multicast == Consensus

• TO multicast can implement consensus (how?)

• Consensus can implement TO multicast (how?)

• Event ordering / log consensus: main application of consensus
protocols!

Bitcoin

• Implement a distributed, replicated state machine that maintains an
account ledger (= bank)
• Scale to thousands of replicas distributed across the world
• Allow old replicas to fail, new replicas to join seamlessly
• Withstand various types of attacks

Approaches that don’t work

• Totally ordered multicast (e.g., ISIS)
• Quadratic communication overhead
• Do not know who all replicas are a priori

• Leader election (e.g., Bully)
• Quadratic communication overhead
• Do not know who all replicas are a priori
• Nodes with highest IDs are leaders =>

• Bottleneck
• Security

Lottery Leader Election

• Every node chooses a random number
• Leader = closest to 0

Hash Functions

• Cryptographic hash function: H(x) -> { 0, 1, …, 2256-1}
• Hard to invert:
• Given y, find x such that H(x) = y

• E.g., SHA256, SHA3, …

• Every node picks random number x and computes H(x)
• Node with H(x) closest to 0 wins

Using a seed

• Every node picks x, computes H(seed || x)
• Closest to 0 wins

What to use as a seed?
• Hash of:
• Previous log
• Node identifier
• New messages to add to log

• Two remaining problems:
• How to find closest to 0?
• How to prevent nodes from trying multiple random numbers?

Iterated Hashing / Proof of work

• Repeat:
• Pick random x, compute y = H(seed || x)
• If y < T, you win!

• Set threshold T so that on average, one winner every few minutes
• E.g.:
• 1000 nodes
• 10^12 hash/second
• Target interval: 10 minutes
• T = ?

• Given a solution, x such that H(seed || x) < T, anyone can verify the
solution in constant time (microseconds)

Block

Log entries
…
…

Puzzle solution

H(B1)
= H(log entries || solution) < T

Log entries
…
…

Puzzle solution

H(B1)

Block B1 Block B2

2019-03-12 Nikita Borisov - UIUC 20

Chaining

• Each block’s puzzle depends on the previous one
• Ln -> Ln-1 -> … -> L1 -> L0

• To add m blocks, must solve m puzzles

• Longest chain wins

2019-03-12 Nikita Borisov - UIUC 21

1 2 3
4’

4 5

6

6’

7

Chain evolution

1

Alice

Bob

Charlie

David

2b

1

1

1

2b

2b

2b

3c

3c

3c

3c

3a

3a

3a

3a 4d

4d

4d

4d

2019-03-12 Nikita Borisov - UIUC 22

Incentives for Logging

• Security better if more people participated in logging
• Incentivize users to log others’ transactions
• Transaction fees: pay me x% to log your data
• Mining reward: each block creates bitcoins

• Replace “Alice minted x” entries with “Alice logged line Ln”

• Payment protocol:
• Alice->Bob: here’s coin x
• Broadcast to everyone: Alice transfers x to Bob
• Bob: wait until transfer appears in a new log line

• Optionally wait until a few more lines follow it

2019-03-12 Nikita Borisov - UIUC 23

Putting it all together

2019-03-12 Nikita Borisov - UIUC 24

Alice generated
50 BTC

Nonce: 1234

Bob generated
50 BTC

Nonce: 5678

Carol generated
50 BTC

Alice transferred 10 BTC to Bob +
1 BTC to Carol (fee)

Nonce: 9932

Account Balance

Alice 39 BTC

Bob 60 BTC

Carol 51 BTC

Hash HashHash

Logging Speed

• How to set T?
• Too short: wasted effort due to broadcast delays & chain splits
• Too long: slows down transactions

• Periodically adjust difficulty T such that one block gets added every 10
minutes
• Determined algorithmically based on timestamps of previous log entries

• Current difficulty
• 7 * 1022 =~ 276 hashes to win

• Large number of participants: hard to revise history!

2019-03-12 Nikita Borisov - UIUC 25

Bitcoin broadcast

• Need to broadcast:
• Transactions to all nodes, so they can be included in a block
• New blocks to all nodes, so that they can switch to longest chain

• Why not R-multicast?
• Have to send O(N) messages
• Have to know which nodes to send to

Gossip / Viral propagation

• Each node connects to a small set of neighbors
• 10–100

• Nodes propagate transactions and blocks to neighbors

• Push method: when you hear a new tx/block, resend them to all
(some) of your neighbors (flooding)
• Pull method: periodically poll neighbors for list of blocks/tx’s, then

request any you are missing

Push propagation

tx

tx

tx

tx

tx

X

Pull propagation

Node 1 Node 2

What transactions do you know?

Tx1, tx7, tx13, tx25, tx28

Please send me tx13, tx28

Contents of tx13, tx28

Maintaining Neighbors

• A seed service
• Gives out a list of random or well-

connected nodes
• E.g., seed.bitnodes.io

• Neighbor discovery
• Ask neighbors about their

neighbors
• Randomly connect to some of

them

Bitcoin summary

Foundations:
• Unreliable broadcast using gossip
• Probabilistic “leader” election for mining blocks (tx ordering)
• Longest chain rule to ensure long-term consistency / security

Compared with Paxos/Raft:
• Scales to thousands of participants, dynamic groups
• Tens of minutes to successfully log a transaction (vs. milliseconds)

