Distributed Systems

CS425/ECE428

03/06/2020

Today’s agenda

* Consensus

* Impossibility of consensus in asynchronous systems

* Impossibility of Distributed Consensus with One Faulty Process, Fischer-
Lynch-Paterson (FLP), 1985

Recap

* Consensus Is a fundamental problem in distributed systems.

* Each process proposes a value.
* All processes must agree on one of the proposed values.

* Possible to solve consensus in synchronous systems.
* Algorithm based on time-synchronized rounds.
* Need at least (f+1) rounds to handle up to f failures.

* Impossible to solve consensus in asynchronous systems.

* Paxos algorithm:
* Guarantees safety but not liveness.
* Hopes to terminate if under good enough conditions.

* Why!? FLP result.

Consensus in asynchronous systems

* Cannot use timeout-based “rounds”.
* Do not have clocks with bounded synchronization.
* Failure detection cannot be both complete and accurate.

* Cannot differentiate between an extremely slow process and a
falled process.

* Consensus Is Impossible in an asynchronous system.

* Proved in the now-famous FLP result.

* Stopped many distributed system designers dead in their tracks.
* Alot of claims of “reliability’” vanished overnight.

FLP result

Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts
AND

MICHAEL S. PATERSON

University of Warwick, Coventry, England

Abstract. The consensus problem involves an asynchronous system of processes, some of which may be
unreliable. The problem is for the reliable processes to agree on a binary value. In this paper, it is shown
that every protocol for this problem has the possibility of nontermination, even with only one faulty
process. By way of contrast, solutions are known for the synchronous case, the “Byzantine Generals”

problem.

Weaker Consensus Problem

* FLP result applicable even for a weak form of consensus problem.
* Bvery process p has an input (proposed) value x, in {0, | }.
* Every process maintains an output value y, initialized to b in the
undecided state.
* Upon entering its decided state, a non-faulty process sets y, 1o a
value in {0, 1}.

* Yy s not changed once 1t Is set in the decided state.

Weaker Consensus Problem

* FLP result applicable even for a weak form of consensus problem.
* Requirements:

* All non-faulty processes in decided state must have chosen the

same value. (safety)
* Some process eventually makes a decision. (liveness)
* Trivial solution of always choosing O is discarded.
* Must pick a proposed value. (validity)
* If all processes propose ‘|’, then chosen value must be ‘|
(integrity).

* Both O and | are possible decision values.

Assumptions

* Impossibility result holds when there Is at least one process that fails by
crashing (stops entirely) during the run of the consensus algorithm.,

* Let's assume that only one process crashes (could be any one).

* Consensus protocol is deterministic.

* Message system Is reliable.
* A message will eventually get delivered.

* Message may be arbitrarily delayed.

Message system (network) model

()

send(p,m) receive(p)
may return null

Global Message Buffer

“Network”

* Abstractly, a process p “calls” receive(p) to receive a message from the
network.

* The network may return “null” a finite number of times.

* After infinite attempts of receive(p), p will receive all messages meant for it.

Notations

Configuration: internal state of each process and the state of message buffer.
* Similar notion to the global state of the system.
* Initial configuration: initial state of a process and empty message buffer.

Event described as e = (p, m) fully defines a step taken by a process in config. C
* e = (p,m):process p receives message m. (m is allowed to be null).
* Internal processing of m at p changes config. from C to C.
* p may then send a finite set of messages to other processes

A step taken by process p changes configuration from one to another.

e(C): the resulting configuration C' after event e is applied to configuration C.
* (p,null) can always be applied to C. Always possible for p to take a step.

Schedule (s): sequence of events applied to C.
¢ Lets ={e|e)e5e,} then s(C) = e,les(ey(e(C))
* Ifsisfinite, s(C) is reachable from C.

Notations

* Schedule (s): sequence of events applied to C.

° Configuration C

Evente =(p ,m’)

Evente '=(p ,m)

(e

Schedule s=(¢’ e’)

®

Equivalent

Notations

* Schedule (s): sequence of events applied to C.
* The associated sequence of steps in the schedule is called a run.

* A runis deciding if some process reaches a decision state in that run.

Lemma |

Disjoint schedules are commutative.

Schedule sl e s2

sl and s2 involve T,
 disjoint sets of Q
' receiving processes,

- and are each applicable Schedule s2

-
-
-
-
1 -

-

-
1 -

-
1 1 -
1 1 PPt
-
! ! -
1 1 -
e e e e e e -
-
-
- S
-
A~

Since sl and s2 never interact, their relative ordering should not
affect the final configuration.

Bivalent vs Univalent

* Let config. C have a set of decision valuesV reachable from it.

* Configurations reachable from C have processes in decided
state with the decided value InV.

* If |[V| = 2, config. C is bivalent

* If [V| = |, config. C is univalent

e O-valent or |-valent, as is the case

* Bivalent means outcome Is unpredictable.

What we will show

|, There exists an inrtial configuration that Is bivalent

2. Starting from a bivalent config,, there Is always
another bivalent config. that is reachable.

lLemma 2 Some initial configuration is bivalent

* Suppose all inttial configurations were either O-valent or [-valent.

* Ifthere are N processes, there are 2N possible initial configurations

* Place all configurations side-by-side (in a lattice), where adjacent
configurations differ in initial x value for exactly one process.

* Both O-valent and |-valent initial configurations exist.

* There has to be some adjacent pair of |-valent and O-valent
configs.

lLemma 2 Some initial configuration is bivalent

* There has to be some adjacent pair of |-valent and O-valent configs.
* Let the process p, that has a different state across these two configs,,
be the process that has crashed (i.e,, is silent throughout)

* Under such a fallure, both initial configs. will lead to the same config.

for the same sequence of events.
* Therefore, at least one of these initial configs. is bivalent when there is

such a failure.

lLemma 2 Some initial configuration is bivalent

* There has to be some adjacent pair of |-valent and O-valent configs.
* Let the process p, that has a different state across these two configs,,

be the process that has crashed (i.e,, is silent throughout)

(X1%2): (00) (Ol) (11) (10) ' Example: system of two process.

g g Algorithm sets y, = min(X; X,).
| 0 (valency without failures)

What if p, never sends a message!
* Undersucha failure, both initial configs. will lead to the same config.
for the same sequence of events.
* Therefore, at least one of these initial configs. is bivalent when there is

such a failure.

lLemma 2 Some initial configuration is bivalent

* There has to be some adjacent pair of |-valent and O-valent configs.
* Let the process p, that has a different state across these two configs,,

be the process that has crashed (i.e,, is silent throughout)

(X1%2): (00) (Ol) (11) (10) ' Example: system of two process.

g g Algorithm sets y, = min(X; X,).
| b (if p, never sends a message)

What if p, never sends a message!
* Undersucha failure, both initial configs. will lead to the same config.
for the same sequence of events.
* Therefore, at least one of these initial configs. is bivalent when there is

such a failure.

lLemma 2 Some initial configuration is bivalent

* There has to be some adjacent pair of |-valent and O-valent configs.
* Let the process p, that has a different state across these two configs,,

be the process that has crashed (i.e,, is silent throughout)

- -o

~
~

(XX,): (00) (01) (1 1)\\‘}(10) Example: system of two process.

Algorithm sets y, = min(X; X,).
What if p, never sends a message!

0 b | O (if p, never sends a message)

* Under such a fallure, both initial configs. will lead to the same config.

for the same sequence of events.
* Therefore, at least one of these initial configs. is bivalent when there is

such a failure.

What we will show

2. Starting from a bivalent config,, there Is always
another bivalent config. that is reachable.

Lemma 3

Starting from a bivalent config., there is
always another bivalent config. that is
reachable

Lemma 3

Starting from a bivalent config., there is
always another bivalent config. that is
reachable

A bivalent initial config.

/
@

Let e=(p,m) be some event
applicable to the initial config.

without applying e.

Since e Is applicable to initial config,, it can be arbitrarily delayed
and applied to each config in C.

Let € be the set of configs. reachable

Starting from a bivalent config., there is
Lemma 3 always another bivalent config. that is
reachable

A bivalent initial config.

/
@

Let e=(p,m) be some event
\ applicable to the initial config.

Let € be the set of configs. reachable

‘\\\: without applying e.
/2' e _Je N\ ¢ TNE

O ® © o

Let D be the set of configs. obtained by applying e to each config. in C.

Lemma 3

Starting from a bivalent config., there is
always another bivalent config. that is
reachable

Lemma 3

Starting from a bivalent config., there is
always another bivalent config. that is
reachable

Claim. Set D contains a bivalent config.
We will prove this by contradiction.
Suppose all configurations in D are univalent (O-valent or |-valent).

Lemma 3

Starting from a bivalent config., there is
always another bivalent config. that is
reachable

Suppose all configurations in D are univalent (O-valent or |-valent).
must have both a O-valent and a [-valent configuration.

O O

O-valent |_valent

I-valent, 1'in {O, |} §

(e was applied -valent

.- before reaching 1in {0, 1}

e/ the univalent c
@

config.) i-valent in

D @ 1in {0,1)

i-valent Case | Case 11
1in {0, 1}

Starting from a bivalent config., there is
Lemma 3 always another bivalent config. that is
reachable

All configs in € are reachable from the initial config.
VWe can apply e to each config in C.
must have both a O-valent and a |-valent configuration.

Starting from a bivalent config., there is
Lemma 3 always another bivalent config. that is
reachable

All configs in € are reachable from the initial config.
VWe can apply e to each config in C.
must have both a O-valent and a |-valent configuration.

There must be some neighbouring pair (Cy, C,) in €,
such that e(C,) = Dyand e(C)) =D

where Dy and D, are

0-valent and |-valent configs. in

O-valent

Starting from a bivalent config., there is
Lemma 3 always another bivalent config. that is
reachable

All configs in € are reachable from the initial config.
VWe can apply e to each config in C.
must have both a O-valent and a |-valent configuration.

There must be some neighbouring pair (Cy, C,) in €,
such that e(C,) = Dyand e(C)) =D

where Dy and D, are

0-valent and |-valent configs. in

Without loss of generality,
suppose €'(Cy) = C,
(could have instead assumed

e'(C,) = C,. Proof structure O @

will be the same.)

O-valent

Starting from a bivalent config., there is
Lemma 3 always another bivalent config. that is
reachable

Claim. Set D contains a bivalent config.
Proof by contradiction.

* Suppose D has only O- and |- valent
states (and no bivalent ones).

* There are states Dy and D, in D,
and CO and CI in C such that
* Dy is O-valent
* D, is |-valent
* Do=e(Co), D1=e(C)) e
* G =e(Gy) © @

Lemma 3

Starting from a bivalent config., there is
always another bivalent config. that is
reachable

Proof. (contd.)

Lete'= (p,m)

We know that e = (p, m)

« Casel:p'isnotp
 Casell:p'isp

O-valent

Lemma 3

Starting from a bivalent config., there is
always another bivalent config. that is
reachable

Proof. (contd.)

« Casel:p'isnotp

Why? (Lemma 1)
But DO 1s then bivalent!

Starting from a bivalent config., there is
Lemma 3 always another bivalent config. that is
reachable

Proof. (contd.)

 Casell:p'isp

Y e
sch. s
e . £
sch. s \ finite

D * deciding run from CO
, - *must be univalent.
CAD sch. s

* p takes no steps
T

@ But A is then bivalent! Contradiction!

Starting from a bivalent config., there is
Lemma 3 always another bivalent config. that is
reachable

Claim. Set D contains a bivalent config.
Proved by contradiction.

Putting it together

* Lemma 2: There exists an initial configuration that is bivalent.

* Lemma 3: Starting from a bivalent config,, there is always another
bivalent config. that is reachable.

* Theorem (Impossibility of Consensus): There is always a run of
events In an asynchronous distributed system such that the group
of processes never reach consensus (I.e., stays bivalent all the time).

Putting it together

* Reaching a decision requires transitioning from a bivalent config to
a univalent config.

* A single step leads the system from a bivalent config. to a
univalent config.

* It I1s always possible to avoid such steps, keeping the system
configs. bivalent throughout.

|, Start from a bivalent inrtial config. C. . (this exists as per Lemma 2).

Init

2. Consider an event e = (p,m) that can be applied to C,_ .. There is a
bivalent config. C,, reachable from C. .. where e is the last event applied
(as per Lemma 3). Apply the corresponding sequence of events to

reach C, from C. ..

3. Repeat from Step |, setting C .. = C,.

INit

Putting it together

* Lemma 2: There exists an initial configuration that is bivalent.

* Lemma 3: Starting from a bivalent config,, there is always another
bivalent config. that is reachable.

* Theorem (Impossibility of Consensus): There is always a run of
events In an asynchronous distributed system such that the group
of processes never reach consensus (I.e., stays bivalent all the time).

Summary

* Consensus Is a fundamental problem in distributed systems.
* Each process proposes a value.
* All processes must agree on one of the proposed values.

* Possible to solve consensus in synchronous systems.
* Algorithm based on time-synchronized rounds.
* Need at least (f+1) rounds to handle up to f failures.

* Impossible to solve consensus Is asynchronous systems.
* FLP result.
* Paxos algorithm:

* Guarantees safety but not liveness.
* Hopes to terminate if under good enough conditions.

Next week

e Other forms of consensus:
e Blockchalns
* Raft algorithm

