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Today’s agenda
• Consensus

• Consensus in synchronous systems
• Chapter 15.4

• Impossibility of consensus in asynchronous systems
• Impossibility of Distributed Consensus with One Faulty Process, Fischer-

Lynch-Paterson (FLP), 1985
• A good enough consensus algorithm for asynchronous systems: 

• Paxos made simple, Leslie Lamport, 2001
• Other forms of consensus 

• Blockchains
• Raft (log-based consensus)



Recap
• Consensus is a fundamental problem in distributed systems.

• Each process proposes a value.
• All processes must agree on one of the proposed values. 

• Possible to solve consensus in synchronous systems.
• Algorithm based on time-synchronized rounds.
• Need at least (f+1) rounds to handle up to f failures.

• Impossible to solve consensus in asynchronous systems.
• Paxos algorithm: 

• Guarantees safety but not liveness. 
• Hopes to terminate if under good enough conditions.

• Why? FLP result.



• Cannot use timeout-based “rounds”.
• Do not have clocks with bounded synchronization. 

• Failure detection cannot be both complete and accurate.
• Cannot differentiate between an extremely slow process and a 

failed process. 
• Consensus is impossible in an asynchronous system.
• Proved in the now-famous FLP result.

• Stopped many distributed system designers dead in their tracks.
• A lot of claims of “reliability” vanished overnight.

Consensus in asynchronous systems



FLP result



• FLP result applicable even for a weak form of consensus problem. 
• Every process p has an input (proposed) value xp in {0,1}.
• Every process maintains an output value yp initialized to b in the 

undecided state. 
• Upon entering its decided state, a non-faulty process sets yp to a 

value in {0,1}. 
• yp is not changed once it is set in the decided state.

Weaker Consensus Problem



• FLP result applicable even for a weak form of consensus problem. 
• Requirements: 

• All non-faulty processes in decided state must have chosen the 
same value. (safety) 

• Some process eventually makes a decision. (liveness)
• Trivial solution of always choosing 0 is discarded. 

• Must pick a proposed value. (validity) 
• If all processes propose ‘1’, then chosen value must be ‘1’. 

(integrity). 
• Both 0 and 1 are possible decision values. 

Weaker Consensus Problem



• Impossibility result holds when there is at least one process that fails by 
crashing (stops entirely) during the run of the consensus algorithm. 

• Let’s assume that only one process crashes (could be any one). 

• Consensus protocol is deterministic. 

• Message system is reliable.
• A message will eventually get delivered. 
• Message may be arbitrarily delayed. 

Assumptions



Message system (network) model

Global Message Buffer

send(p,m) receive(p)
may return null

“Network”

p’ p

• Abstractly,  a process p “calls” receive(p) to receive a message from the 
network.

• The network may return “null” a finite number of times.
• After infinite attempts of receive(p), p will receive all messages meant for it.    



Notations
• Configuration: internal state of each process and the state of message buffer. 

• Similar notion to the global state of the system.
• Initial configuration: initial state of a process and empty message buffer.

• Event described as e = (p, m) fully defines a step taken by a process in config. C. 
• e = (p, m): process p receives message m. (m is allowed to be null). 
• Internal processing of m at p changes config. from C to C’.
• p may then send a finite set of messages to other processes

• A step taken by process p changes configuration from one to another. 

• e(C): the resulting configuration C’ after event e is applied to configuration C.
• (p, null) can always be applied to C. Always possible for p to take a step.

• Schedule (s): sequence of events applied to C.
• Let s = {e1,e2,e3,e4}, then s(C ) = e4(e3(e2(e1(C )) 
• If s is finite, s(C) is reachable from C.



Notations

C

C’

C’’

Event e’=(p’,m’)

Event e’’=(p’’,m’’)

Configuration C

Schedule s=(e’,e’’)

C

C’’

• Schedule (s): sequence of events applied to C.

Equivalent



Notations

• Schedule (s): sequence of events applied to C.

• The associated sequence of steps in the schedule is called a run.

• A run is deciding if some process reaches a decision state in that run.



Lemma 1

C

C’

C’’

Schedule s1

Schedule s2

s2

s1

s1 and s2 involve
disjoint sets of 
receiving processes, 
and are each applicable
on C

Disjoint schedules are commutative. 

Since s1 and s2 never interact, their relative ordering should not 
affect the final configuration. 



Bivalent vs Univalent

• Let config. C have a set of decision values V reachable from it.
• Configurations reachable from C have processes in decided 

state with the decided value in V. 

• If |V| = 2, config. C is bivalent

• If |V| = 1, config. C is univalent 
• 0-valent or 1-valent, as is the case

• Bivalent means outcome is unpredictable.



What we will show

1. There exists an initial configuration that is bivalent

2. Starting from a bivalent config., there is always 
another bivalent config. that is reachable.



Lemma 2 Some initial configuration is bivalent

• Suppose all initial configurations were either 0-valent or 1-valent.
• If there are N processes, there are 2N possible initial configurations
• Place all configurations side-by-side (in a lattice), where adjacent 

configurations differ in initial xp value for exactly one process.

0         1          0        1        0         1

• Both 0-valent and 1-valent initial configurations exist. 
• There has to be some adjacent pair of 1-valent and 0-valent 

configs.



Lemma 2 Some initial configuration is bivalent

• There has to be some adjacent pair of 1-valent and 0-valent configs.
• Let the process p, that has a different state across these two configs., 

be the process that has crashed (i.e., is silent throughout)

• Under such a failure, both initial configs. will lead to the same config. 
for the same sequence of events.

• Therefore, at least one of these initial configs. is bivalent when there is 
such a failure.

0         1          0        1        0         1



Lemma 2 Some initial configuration is bivalent

• There has to be some adjacent pair of 1-valent and 0-valent configs.
• Let the process p, that has a different state across these two configs., 

be the process that has crashed (i.e., is silent throughout)

• Under such a failure, both initial configs. will lead to the same config. 
for the same sequence of events.

• Therefore, at least one of these initial configs. is bivalent when there is 
such a failure.

(x1x2): (00)   (01)   (11)  (10) 

0         0       1        0 (valency without failures)

Example: system of two process. 
Algorithm sets yp = min(x1,x2).

What if p2 never sends a message? 



Lemma 2 Some initial configuration is bivalent

• There has to be some adjacent pair of 1-valent and 0-valent configs.
• Let the process p, that has a different state across these two configs., 

be the process that has crashed (i.e., is silent throughout)

• Under such a failure, both initial configs. will lead to the same config. 
for the same sequence of events.

• Therefore, at least one of these initial configs. is bivalent when there is 
such a failure.

(x1x2): (00)   (01)   (11)  (10) 

0         0       1       b (if p2 never sends a message)

Example: system of two process. 
Algorithm sets yp = min(x1,x2).

What if p2 never sends a message? 



Lemma 2 Some initial configuration is bivalent

• There has to be some adjacent pair of 1-valent and 0-valent configs.
• Let the process p, that has a different state across these two configs., 

be the process that has crashed (i.e., is silent throughout)

• Under such a failure, both initial configs. will lead to the same config. 
for the same sequence of events.

• Therefore, at least one of these initial configs. is bivalent when there is 
such a failure.

(x1x2): (00)   (01)   (11)  (10) 

0         b 1       0 (if p1 never sends a message)

Example: system of two process. 
Algorithm sets yp = min(x1,x2).

What if p1 never sends a message? 



What we will show

1. There exists an initial configuration that is bivalent

2. Starting from a bivalent config., there is always 
another bivalent config. that is reachable.



Lemma 3
Starting from a bivalent config., there is 

always another bivalent config. that is 
reachable



Lemma 3
Starting from a bivalent config., there is 

always another bivalent config. that is 
reachable

A bivalent initial config.
Let e=(p,m) be some event

applicable to the initial config.
Let C be the set of configs. reachable 
without applying e.

Since e is applicable to initial config., it can be arbitrarily delayed 
and applied to each config in C.



Lemma 3
Starting from a bivalent config., there is 

always another bivalent config. that is 
reachable

A bivalent initial config.
Let e=(p,m) be some event

applicable to the initial config.
Let C be the set of configs. reachable 
without applying e.

e       e       e           e        e

Let D be the set of configs. obtained by applying e to each config. in C.



Lemma 3
Starting from a bivalent config., there is 

always another bivalent config. that is 
reachable

D

C

e       e       e           e        e

bivalent

[don’t apply event e=(p,m)]



Lemma 3
Starting from a bivalent config., there is 

always another bivalent config. that is 
reachable

D

C

e       e       e           e        e

bivalent

[don’t apply event e=(p,m)]

Claim. Set D contains a bivalent config.
We will prove this by contradiction.
Suppose all configurations in D are univalent (0-valent or 1-valent). 



Lemma 3
Starting from a bivalent config., there is 

always another bivalent config. that is 
reachable

Suppose all configurations in D are univalent (0-valent or 1-valent). 
D must have both a 0-valent and a 1-valent configuration.  

0-valent 1-valent i-valent
i in {0,1}

i-valent
i in {0,1}

i-valent in D
i in {0,1}

e

Case 1I

i-valent, i in {0,1}
(e was applied 
before reaching 
the univalent 

config.)
e

Case 1



Lemma 3
Starting from a bivalent config., there is 

always another bivalent config. that is 
reachable

All configs in C are reachable from the initial config.
We can apply e to each config in C.
D must have both a 0-valent and a 1-valent configuration.  

D

C

e       e       e           e        e

bivalent

[don’t apply 
e=(p,m)]



Lemma 3
Starting from a bivalent config., there is 

always another bivalent config. that is 
reachable

All configs in C are reachable from the initial config.
We can apply e to each config in C.
D must have both a 0-valent and a 1-valent configuration.  

There must be some neighbouring pair (C0, C1) in C,  
such that e(C0) = D0 and e(C1) = D1
where D0 and D1 are 
0-valent and 1-valent configs.  in D.

D

C
C0

C1

D0 D1

e       e       e           e        e

bivalent

0-valent 1-valent



Lemma 3
Starting from a bivalent config., there is 

always another bivalent config. that is 
reachable

All configs in C are reachable from the initial config.
We can apply e to each config in C.
D must have both a 0-valent and a 1-valent configuration.  

There must be some neighbouring pair (C0, C1) in C,  
such that e(C0) = D0 and e(C1) = D1
where D0 and D1 are 
0-valent and 1-valent configs.  in D.

Without loss of generality, 
suppose e’(C0) = C1.
(could have instead assumed
e’(C1) = C0. Proof structure 
will be the same.)

D

C
C0

C1

D0 D1

e       e       e           e        e

bivalent

0-valent 1-valent

e’



Lemma 3
Starting from a bivalent config., there is 

always another bivalent config. that is 
reachable

Claim. Set D contains a bivalent config.
Proof by contradiction. 
• Suppose D has only 0- and 1- valent 

states (and no bivalent ones).
• There are states D0 and D1 in D, 

and C0 and C1 in C such that 
• D0 is 0-valent
• D1 is 1-valent
• D0=e(C0), D1=e(C1)
• C1 = e’(C0) 

D

C
C0

C1

D0 D1

e       e       e           e        e

bivalent

0-valent 1-valent

e’



Lemma 3
Starting from a bivalent config., there is 

always another bivalent config. that is 
reachable

Proof. (contd.)

Let e’ = (p’, m’)
We know that e = (p, m)
• Case I: p’ is not p
• Case II: p’ is p

D

C
C0

C1

D0 D1

e       e       e           e        e

bivalent

0-valent 1-valent

e’



Lemma 3
Starting from a bivalent config., there is 

always another bivalent config. that is 
reachable

Proof. (contd.)

• Case I: p’ is not p

C0

D1

D0 C1

e

ee’

e’

Why? (Lemma 1)
But D0 is then bivalent!



Lemma 3
Starting from a bivalent config., there is 

always another bivalent config. that is 
reachable

Proof. (contd.)

• Case II: p’ is p
C0

D1

D0

C1

e e’

A

E0

e

sch. s

E1

sch. s

(e’,e)

e
sch. s
• finite
• deciding run from C0

•must be univalent.
• p takes no steps

sch. s

But A is then bivalent! Contradiction!



Lemma 3
Starting from a bivalent config., there is 

always another bivalent config. that is 
reachable

D

C

e       e       e           e        e

bivalent

[don’t apply event e=(p,m)]

Claim. Set D contains a bivalent config.
Proved by contradiction. 



Putting it together

• Lemma 2: There exists an initial configuration that is bivalent.

• Lemma 3: Starting from a bivalent config., there is always another 
bivalent config. that is reachable.

• Theorem (Impossibility of Consensus): There is always a run of 
events in an asynchronous distributed system such that the group 
of processes never reach consensus (i.e., stays bivalent all the time).



Putting it together
• Reaching a decision requires transitioning from a bivalent config to 

a univalent config. 
• A single step leads the system from a bivalent config. to a 

univalent config.
• It is always possible to avoid such steps, keeping the system 

configs. bivalent throughout. 

1. Start from a bivalent initial config. Cinit (this exists as per Lemma 2).
2. Consider an event e = (p,m) that can be applied to Cinit. There is a 

bivalent config. Cbi reachable from Cinit where e is the last event applied 
(as per Lemma 3). Apply the corresponding sequence of events to 
reach Cbi from Cinit.

3. Repeat from Step 1, setting Cinit = Cbi. 



Putting it together

• Lemma 2: There exists an initial configuration that is bivalent.

• Lemma 3: Starting from a bivalent config., there is always another 
bivalent config. that is reachable.

• Theorem (Impossibility of Consensus): There is always a run of 
events in an asynchronous distributed system such that the group 
of processes never reach consensus (i.e., stays bivalent all the time).



Summary
• Consensus is a fundamental problem in distributed systems.

• Each process proposes a value.
• All processes must agree on one of the proposed values. 

• Possible to solve consensus in synchronous systems.
• Algorithm based on time-synchronized rounds.
• Need at least (f+1) rounds to handle up to f failures.

• Impossible to solve consensus is asynchronous systems.
• FLP result.
• Paxos algorithm: 

• Guarantees safety but not liveness. 
• Hopes to terminate if under good enough conditions.



Next week

• Other forms of consensus:
• Blockchains
• Raft algorithm


