
Distributed Systems

CS425/ECE428

02/28/2020

Today’s agenda

• Review of relevant concepts for first midterm.

• Not meant to be an exhaustive review!

• Go over the slides for each class.
• Refer to lecture videos and textbook to fill in gaps in

understanding.

Topics for first midterm

• System model and Failures
• Failure Detection
• Clock Synchronization
• Event ordering and Logical Timestamps
• Global Snapshot
• Multicast
• Mutual Exclusion

Topics for first midterm

• System model and Failures
• Failure Detection
• Clock Synchronization
• Event ordering and Logical Timestamps
• Global Snapshot
• Multicast
• Mutual Exclusion

What is a distributed system?

Independent components that are connected by a network
and communicate by passing messages to achieve a common

goal, appearing as a single coherent system.

process

Relationship between processes

• Two broad categories:

• Client-server:
• different roles/responsibilities.

• Peer-to-peer:
• similar role/responsibility.
• run the same program/algorithm.

Key aspects of a distributed system

• Processes must communicate with one another to coordinate actions.
• Communication channel between each pair of processes.
• Time taken to transmit a message over a communication channel

may vary.

• Different processes (on different computers) have different clocks.
• These clocks drift from real time at different rates.

• Processes and communication channels may fail.

Two ways to model

• Synchronous distributed systems:
• Known upper and lower bounds on time taken by each step in a

process.
• Known bounds on message passing delays.
• Known bounds on clock drift rates.

• Asynchronous distributed systems:
• No bounds on process execution speeds.
• No bounds on message passing delays.
• No bounds on clock drift rates.

Types of failure

• Omission: when a process or a channel fails to perform
actions that it is supposed to do.

• Process may crash.
• Fail-stop: if other processes can detect that the process

has crashed.
• Communication omission: a message sent by process was

not received by another.
• Arbitrary (Byzantine) Failures: any type of error, e.g. a

process executing incorrectly, sending a wrong message, etc.
• Timing Failures: Timing guarantees are not met.

• Applicable only in synchronous systems.

Topics for first midterm

• System model and Failures
• Failure Detection
• Clock Synchronization
• Event ordering and Logical Timestamps
• Global Snapshot
• Multicast
• Mutual Exclusion

How to detect a crashed process?

p q
Periodic ping

ack

p q
Periodic

heartbeats

If p doesn’t receive an ack after sending a ping within a specified timeout,
declare q has failed.

If p doesn’t receive a heartbeat from q for a specified timeout,
declare q has failed.

Computing timeout values

• Can precisely compute timeout value in synchronous
systems.

• In the worst case, how long would take to receive an ack after
sending a ping?

• In the worst case, what is the maximum time gap between two
consecutive heartbeats?

• Can estimate timeout value based on observed round-trip
times in asynchronous systems.

Metrics for evaluating failure detector

• Completeness: Every failed process is eventually detected.

• Accuracy: Every detected failure corresponds to a crashed
process (no mistakes).

• Can we achieve completeness and accuracy in
synchronous systems?

• What about asynchronous systems?

Metrics for evaluating failure detector

• Completeness: Every failed process is eventually detected.

• Accuracy: Every detected failure corresponds to a crashed
process (no mistakes).

• What are the performance metrics?

Metrics for evaluating failure detector

• Completeness: Every failed process is eventually detected.

• Accuracy: Every detected failure corresponds to a crashed
process (no mistakes).

• Worst-case failure detection time: maximum time gap
between when a failure occurs to when it is detected.

• Bandwidth usage: No. of messages exchanged for failure
detection per unit time.

Extending to a system of N processes

• Centralized heartbeat
• All processes send heartbeats to a central server.

• Ring-based failure detector
• A process sends heartbeats to its ring successor.

• All-to-all failure detector
• All processes send heartbeats to each-other.

Trade-off in completeness and bandwidth usage.

Topics for first midterm

• System model and Failures
• Failure Detection
• Clock Synchronization
• Event ordering and Logical Timestamps
• Global Snapshot
• Multicast
• Mutual Exclusion

Clock Skew and Drift Rates

• Each process has an internal clock.
• Clocks between processes on different computers differ :

• Clock skew:
• relative difference between two clock values.

• Clock drift rate:
• change in skew from a perfect reference clock per unit time

(measured by the reference clock).

Clock synchronization

• External synchronization
• Synchronize time with an authoritative clock.

• Internal synchronization
• Synchronize time internally between all processes in a distributed

system.
• Synchronization bound (D) between two clocks A and B over a real

time interval I.
• |A(t) – B(t)| < D, for all t in the real time interval I.
• Skew(A, B) < D during the time interval I.
• Important metric: worst-case skew right after synchronization.
• Accuracy bound for external synchronization.

Clock Synchronization

What time Tc should client adjust its local clock to after receiving ms ?

client server

mr: What is the time?

ms : It is Ts

Ts

Tc = Ts + ∆
∆

But the value of ∆ is unknown.

Clock synchronization

• In a synchronous system:
• use known maximum and minimum network delays to

find the ∆ value that results in smallest worst-case skew.

• In asynchronous system:
• Use observed round-trip time (RTT).
• Cristian algorithm: Estimates ∆ as RTT/2.

• What is the worst-case skew?

Other clock synchronization protocols

• Berkeley algorithm for internal synchronization.
• Central server collects and estimates local timestamps, computes

updated time as average of estimated local times, and disseminates
offsets from updated time.

• Network Time Protocol:
• External time synchronization service over the Internet.
• Symmetric mode synchronization:

• Two servers exchange a pair of messages (A to B and B to A)
• Estimate offset and accuracy bound using the send and receive

timestamps at A and B for both messages.

Topics for first midterm

• System model and Failures
• Failure Detection
• Clock Synchronization
• Event ordering and Logical Timestamps
• Global Snapshot
• Multicast
• Mutual Exclusion

Happened-Before Relationship

• Happened-before (HB) relationship denoted by →.
• e → e’ means e happened before e’.
• e →i e’ means e happened before e’, as observed by pi.

• HB rules:
• If ∃ pi , e →i e’ then e → e’.
• For any message m, send(m) → receive(m)
• If e → e’ and e’ → e” then e → e’’

• Also called “potentially causal” or “causal” ordering.

Lamport’s Logical Clock

• Logical timestamp for each event that captures the happened-before
relationship.

• Algorithm: Each process pi

1. initializes local clock Li = 0.
2. increments Li before timestamping each event.
3. piggybacks Li when sending a message.
4. upon receiving a message with clock value t

• sets Li = max(t, Li)
• increments Li (as per point 2).

• If e → e’ then L(e) < L(e’).
• What can we conclude if L(e) < L(e’)?

Vector Clocks

• Each event associated with a vector timestamp.
• Each process maintains vector of clocks Vi

• Vi[j] is the clock for process pj

• Algorithm: each process pi:
1. initializes local clock Vi[j] = 0
2. increments Vi[i] before timestamping each event.
3. piggybacks Vi when sending a message.
4. upon receiving a message with clock value t

• setsVi[j] = max(Vi[j], t[j]) for all j=1…n.
• increments Vi[i] (as per point 2).

Comparing Vector Timestamps
• Let V(e) = V and V(e’) = V’

• V= V’, iff V[i] = V’[i], for all i = 1, … , n
• V ≤	V’, iff V[i] ≤V’[i], for all i = 1, … , n
• V < V’, iff V ≤V’ &V ≠	V’

iff V ≤V’ & $ j such that (V[j] < V’[j])

• e → e’ iff V < V’
• (V < V’ implies e → e’) and (e → e’ implies V < V’)

• e || e’ iff (V ≮V’ and V’ ≮V)

Topics for first midterm

• System model and Failures
• Failure Detection
• Clock Synchronization
• Event ordering and Logical Timestamps
• Global Snapshot
• Multicast
• Mutual Exclusion

Global snapshot

• State of each process (and each channel) in the system at a given
instant of time.

• Difficult to capture a global snapshot of the system.
• Requires precise clock synchronization across processes.

• How do we capture global snapshots without precise time
synchronization across processes?

• Relax the requirement for capturing the state of different
processes and channels at the same real time instant.

• As long as the global state is consistent, it is still useful in reasoning
about properties of the system.

Notations and definitions
• For a process pi , where events ei

0, ei
1, … occur:

history(pi) = hi = <ei
0, ei

1, … >
prefix history(pi

k) = hi
k = <ei

0, ei
1, …,ei

k >
si

k : pi’s state immediately after kth event.
• For a set of processes <p1, p2, p3, …., pn>:

global history: H = Èi (hi)
a cut C Í H = h1

c1 È h2
c2 È … È hn

c3

the frontier of C = {ei
ci, i = 1,2, … n}

global state S that corresponds to cut C = Èi (si
ci)

Notations and definitions

• A cut C is consistent if and only if
"e Î C (if f ® e then f Î C)

• A global state S is consistent if and only if it corresponds
to a consistent cut.

Notations and definitions

• A run is a total ordering of events in H that is consistent
with each hi’s ordering.

• A linearization is a run consistent with happens-before
(®) relation in H.

• Linearizations pass through consistent global states.

• Execution lattice: a way to reason about linearizations and
the set of all consistent global states.

Chandy-Lamport Algorithm

• Records a consisted global snapshot
• identifies a consistent cut.

• Key system assumptions:
• Two uni-directional communication channels between each

ordered process pair : pj to pi and pi to pj.
• Communication channels are FIFO-ordered (first in first out).
• No failures (messages are not dropped, process doesn’t crash).

Chandy-Lamport Algorithm
• Initiating process records its state and sends a marker to all other

processes.

• When a process receives a marker, its records its state and sends a
marker to all other processes.

• Channel state recorded by the receiving process:
• set of messages received from the channel between when the

process records its state to when it receives a marker on that
channel.

• Algorithm terminates when each process receives a marker from all
other processes.

Chandy-Lamport Algorithm

• Records a consisted global snapshot
• identifies a consistent cut.

• Key system assumptions:
• Two uni-directional communication channels between each

ordered process pair : pj to pi and pi to pj.
• Communication channels are FIFO-ordered (first in first out).
• No failures (messages are not dropped, process doesn’t crash).

• Useful for reasoning about system properties.

Liveness
• Liveness = guarantee that something good will happen,

eventually
• Examples:

• Guarantee that a distributed computation will terminate.
• “Completeness” in failure detectors.
• All processes eventually decide on a value.

• A global state S0 satisfies a liveness property P iff:
• liveness(P(S0)) º "LÎ linearizations from S0, L passes through a

SL & P(SL) = true
• For any linearization starting from S0, P(s) is true for some state

SL reachable from S0.
• For any linearization starting from S0, (not P(S)) is false for some

state SL reachable from S0.

Safety

• Safety = guarantee that something bad will never happen.
• Examples:

• There is no deadlock in a distributed transaction system.
• “Accuracy” in failure detectors.
• No two processes decide on different values.

• A global state S0 satisfies a safety property P iff:
• safety(P(S0)) º "S reachable from S0, P(S) = true.
• For all states S reachable from S0, P(S) is true.
• For all states S reachable from S0, (not P(S)) is false.

Stable Global Predicates

• Stable = once true, stays true forever afterwards.

• Stable liveness examples
• Computation has terminated.

• Stable non-safety examples
• There is a deadlock.

• All stable global properties can be detected using the Chandy-Lamport
algorithm.

Topics for first midterm

• System model and Failures
• Failure Detection
• Clock Synchronization
• Event ordering and Logical Timestamps
• Global Snapshot
• Multicast
• Mutual Exclusion

Multicast Protocol

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

Incoming
messages

deliver(m)

Distinction between
when a message

arrives at process p’s
node

vs
when the message is

delivered to the
application at p.

It is the message
delivery that matters!

Basic Multicast (B-Multicast)

• Straightforward way to implement B-multicast:
• use a reliable one-to-one send (unicast) operation:

B-multicast(group g, message m):
for each process p in g, send (p,m).

receive(m): B-deliver(m) at p.
• Guarantees: message is eventually delivered to the group if:

• Processes are non-faulty.
• The unicast “send” is reliable.
• Sender does not crash.

• Can we provide reliable delivery even after sender crashes?

Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will
eventually deliver m itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some
correct process multicasts a message m, then, all correct processes
deliver m too.

Implementing R-Multicast

On initialization
Received := {};

For process p to R-multicast message m to group g
B-multicast(g,m); (p∈ g is included as destination)

On B-deliver(m) at process q with g = group(m)
if (m ∉ Received):

Received := Received ∪ {m};
if (q ≠ p): B-multicast(g,m);
R-deliver(m)

Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and
then multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any
correct process that delivers m’ will have already delivered m.

• Note that à counts messages delivered to the application, rather
than all network messages.

• Total ordering: If a correct process delivers message m before
m’ (independent of the senders), then any other correct
process that delivers m’ will have already delivered m.

Implementing FIFO order multicast
• Each process maintains a per-process sequence number

• Processes P1 through PN
• Pi maintains a vector of sequence numbers Si[1…N] (initially all

zeroes)
• Si[i], is the no. of messages Pi multicast (and delivered to itself).
• Si[j] is the latest sequence number Pi has received from Pj.

• Pi sends value Si[i] along with its multicast message.
• Receiving process Pj delivers Pi’s message only if its sequence

number is the next expected value (Sj[i] + 1) and increments Sj[i].
• Otherwise buffer it until the condition is satisfied.

Implementing causal order multicast
• Each process maintains a per-process sequence number

• Processes P1 through PN
• Pi maintains a vector of sequence numbers Si[1…N] (initially all

zeroes)
• Si[i], is the no. of messages Pi multicast (and delivered to itself).
• Si[j] is the latest sequence number Pi has received from Pj.

• Pi sends the entire vector Si along with its multicast message.
• Receiving process Pj delivers Pi’s message (with sequence vector S) if:

• It the next expected value (S[i] = Sj[i] + 1)
• For all k ≠ i: S[k] ≤ Si[k]

It then sets Sj to S.
• Otherwise buffer it until the condition is satisfied.

Implementing total order multicast

• Central sequencer-based approach:
• Sequencer maintains a global (total) sequence number counter.
• Each process multicasts a message to the group and the

sequencer.
• Sequencer assigns a sequence number to the received message,

multicasts this sequence number (and message id) to other
processes in the group, and increments its sequence number
counter.

• A process waits for the sequencer to send the sequence number
of a message before delivering it, and delivers messages in the
order of their sequence numbers.

Implementing total order multicast

• ISIS algorithm:
• Sender multicasts message to everyone.
• Receiving processes:

• reply with proposed priority (sequence no.)
• larger than all observed agreed priorities
• larger than any previously proposed (by self) priority

• store message in priority queue
• ordered by priority (proposed or agreed)

• mark message as undeliverable
• Sender chooses agreed priority, re-multicasts message with agreed priority

• maximum of all proposed priorities
• Upon receiving agreed (final) priority

• reorder messages based on final priority.
• mark the message as deliverable.
• deliver any deliverable messages at front of priority queue.

Underlying multicast mechanisms

• Unicast to each process in the group.

• Tree-based multicast.
• Construct a minimum spanning tree of processes and unicast along the

tree.

• Gossip
• Each process sends a message to ‘b’ random processes.

Topics for first midterm

• System model and Failures
• Failure Detection
• Clock Synchronization
• Event ordering and Logical Timestamps
• Global Snapshot
• Multicast
• Mutual Exclusion

Problem Statement for mutual exclusion

• Critical Section Problem:
• Piece of code (at all processes) for which we

need to ensure there is at most one process
executing it at any point of time.

• Each process can call three functions
• enter() to enter the critical section (CS)
• AccessResource() to run the critical section code
• exit() to exit the critical section

Mutual Exclusion Requirements

• Need to guarantee 3 properties:
• Safety (essential):

• At most one process executes in CS (Critical
Section) at any time.

• Liveness (essential):
• Every request for a CS is granted eventually.

• Ordering (desirable):
• Requests are granted in the order they were

made.

Performance metrics

• Bandwidth:

• the total number of messages sent in each enter and exit operation.

• Client delay:

• the delay incurred by a process at each enter and exit operation
(when no other process is in, or waiting)

• We will focus on the client delay for the enter operation.

• Synchronization delay:

• the time interval between one process exiting the critical section
and the next process entering it (when there is only one process
waiting).

Mutual exclusion in distributed systems

• Classical algorithms for mutual exclusion in distributed
systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
• Maekawa Algorithm

Central server based

• A client process:
• sends request to the central server when it wants to enter CS.
• enters CS only after receiving a token from the server.
• releases the token back to the server upon exiting CS.

• Server grants token to only one process at a time.

• Does it guarantee safety, liveness, and ordering?

• What is its bandwidth usage, client delay, and synchronization delay?

Ring based

• A single token moves around a logical ring of processes.
• A process holds the token while executing CS, and releases it when

done.
• It simply forwards the token if it does not want to enter CS.

• Does it guarantee safety, liveness, and ordering?

• What is its bandwidth usage, client delay, and synchronization delay?

Ricart-Agrawala Algorithm

• Send request to all processes and wait for reply from all.
• A process always replies back to a request, except when:

• It is currently executing CS (in HELD state)
• It wants to enter CS (in WANTED state) and deserves to enter it

sooner.
• The Lamport timestamp of its own request is smaller than the

Lamport timestamp of the received request.
• Use process ID to break ties.

• Does it guarantee safety, liveness, and ordering?
• What is its bandwidth usage, client delay, and synchronization delay?

Maekawa Algorithm

• Each process has a voting set consisting of a subset of processes.
• Intersection of voting set of any two processes must be non-zero.
• Send request to all processes in the voting set and wait for reply from

all of them.
• A process replies back to a request only if it has not replied to (or

voted for) a request from another process.

• Does it guarantee safety, liveness, and ordering?
• What is its bandwidth usage, client delay, and synchronization delay?

Topics for first midterm

• System model and Failures
• Failure Detection
• Clock Synchronization
• Event ordering and Logical Timestamps
• Global Snapshot
• Multicast
• Mutual Exclusion

Summary

• Review of relevant concepts for first midterm.

• Not meant to be an exhaustive review!

• Go over the slides for each class.
• Refer to lecture videos and textbook to fill in gaps in

understanding.

Good luck!

