Distributed Systems

CS425/ECE428

02/26/2020

Today’s agenda

* Wrap-up Leader Election

* Chapter 15.3
* Algorithms for leader election

* Acknowledgement:
* Materials derived from Prof. Indy Gupta and Prof. Nikita Borisov.

Logistics

* Midterm I:
 March 29, Monday
* /-9pm
1002 ECE Building
Syllabus:
* Up to and including Mutual Exclusion.
Midterm topics review in next class (Friday, Feb 28™).

e HW3:

* Release date has been postponed to next week.
* Updated (tentative) HW schedule will be posted on the website.

Recap: Mutual Exclusion

* Mutual exclusion important problem in distributed
systems.

* Ensure at most one process Is executing a piece of code
(critical section) at a given point In time.

* Four classical algorithms:
* Central server-based
* Ring-based
* Ricart-Agrawala
* Maekawa

Leader Election Problem

* In a group of processes, elect a Leader to undertake special tasks

* And let everyone know In the group about this Leader

* What happens when a leader falls (crashes)
* Some process detects this (using a Failure Detector!)

* Then calls for a new election.

* Goal of an election algorithm:
|. Elect one leader only among the non-faulty processes

2. All non-faulty processes agree on who Is the leader

Election Problem, Formally

* A run of the election algorithm must always guarantee:
* Safety: For all non-faulty processes p:
* p has elected:
* (g:a particular non-faulty process with the best attribute value)
* or Null
* Liveness: For all election runs:
* election run terminates

* & for all non-faulty processes p: p's elected is not Null

* At the end of the election protocol, the non-faulty process with the
best (highest) election attribute value Is elected.
* Common attribute : leader has highest id

* Other attribute examples: leader has highest IP address, or fastest cpu, or most
disk space, or most number of files, etc.

Calling for an Election

* Any process can call for an election.
* A process can call for at most one election at a time.

* Multiple processes are allowed to call an election simultaneously.

* All of them together must yield only a single leader

* The result of an election should not depend on which process

calls for it.

System Model

* N processes.
* Messages are eventually delivered.
* Fallures may occur during the election protocol.

* Each process has a unique id.
* Each process has a unique attribute (based on which Leader is elected).

* If two processes have the same attribute, combine the attribute with the
process id to break ties.

Classical Election Algorithms

* Ring election algorithm

* Bully algorithm

Classical Election Algorithms

* Ring election algorithm

* Bully algorithm

Ring Election Algorithm

* N processes are organized In a logical ring
* All messages are sent clockwise around the ring.

/\E\
J
N

Ring Election Protocol (basic version)

* When P start election
* send election message with Pi's <attr, 1> to ring successor.

* When Pj receives message (election, <attr,, x>) from predecessor
* If (attr,, x) > (attr;)):
 forward message (election, <attr,, x>) to successor
* If (attr,, x) < (attr;))
* send (election, <attr; j>) to successor
* If (attr,, x) = (attr,)) : Pjis the elleclted I.ealder (Why?)
* send elected message containing Pj's id.

* elected message forwarded along the ring until it reaches the leader.

Ring Election: Example

/}Initiates the election

[A

(7
N —

Goal: Elect highest 1d process as leader

Ring Election: Example

/}Initiates the election

[A

(7
N —

Goal: Elect highest 1d process as leader

Ring Election: Example

/}Initiates the election

[A

(7
—

Goal: Elect highest 1d process as leader

Ring Election: Example

/}Initiates the election

[A

(7
N —

Goal: Elect highest 1d process as leader

Ring Election: Example

/}Initiates the election

[A

(7
N —

Goal: Elect highest 1d process as leader

Ring Election: Example

/}Initiates the election

[A

(7
N —

Goal: Elect highest 1d process as leader

Ring Election: Example

/}Initiates the election

[A

(7
N

Goal: Elect highest 1d process as leader

Ring Election: Example

/}Initiates the election

[A

Elected: 80 (/
N

Goal: Elect highest 1d process as leader

Ring Election: Example

Initiates the election

Elected: 80 f \

elected = 80 (

Goal: Elect highest 1d process as leader

Ring Election: Example

elected = 80 /}Initiates the election
f | e\lected =80

elected = 80
(/ elected = 80

W/ elected = 80

Goal: Elect highest 1d process as leader

Ring Election: Example

elected = 80 /}Initiates the election
| e\lected =80

[

elected = 80
(/ elected = 80

elected = 80 \\% elected = 80

Goal: Elect highest 1d process as leader

Ring Election Protocol (basic version)

* When P start election
* send election message with Pi's <attr, 1> to ring successor.

* When Pj receives message (election, <attr,, x>) from predecessor
* If (attr,, x) > (attr;)):
 forward message (election, <attr,, x>) to successor
* If (attr,, x) < (attr;))
* send (election, <attr; j>) to successor
* If (attr,, x) = (attr,)) : Pjis the elleclted I.ealder (Why?)
* send elected message containing Pj's id.

* elected message forwarded along the ring until it reaches the leader.

What happens when multiple processes call for an election?

Ring Election: Example

/}Initiates the election

N\

(b

N

sent twice.
Elected: 80 also sent twice.

\/ Initiates the election

Ring Election Protocol [Chang & Roberts'79]

* When Pi start election
* send election message with Pi's <attr, I> to ring successor.
* set state to

* When P} receives message (election, <attr,, x>) from predecessor
* If (attr,, x) > (attr;)):
» forward message (election, <attr,, x>) to successor
* set state to
* If (attr,, x) < (attr,))
* If (not):
* send (election, <attr; j>) to successor
* set state to
o If (attr, x) = (attr; J) : Pjis the elected leader (why?)
* send elected message containing PJ's id.

* elected message forwarded along the ring until it reaches the leader.
* Set state to when an elected message Is received.

Ring Election: Example

[

/}Initiates the election

N\

(b

and Elected: 80
sent only once.

Initiates the election

Analysis

* Let's assume no fallures occur during the election

protocol rtself, and there are N processes.

* Let’s also assume that only one process initiates the

algorithm
* Bandwidth usage: Total number of messages sent.

* Turnaround time: The number of serialized message
transmission times between the initiation and termination

of a single run of the algorithm.

Worst-case

Initiates the electionf \

-
-——

When the inttiator is the
ring successor of the

(/ would-be leader,

Worst-case

Initiates the electionf

-
-——

(N-1) messages for Election message to
get from N6 to N8O0.

N messages for Election message to
circulate around ring without message
being changed.

N messages for Elected message to
circulate around the ring

No. of messages: (3N-1)

Turnaround time: (3N-1) message
transmission times

Best-case

/ N\

Initiates the (/

When the initiator is the
would-be leader,

election

Best-case

/} When the initiator is the would-

: be leadern
f N

No. of messages: 2N

Initiates the (/ Turnaround time:

election ~- 2N message transmission times

Analysis

* Let's assume no fallures occur during the election

protocol itself, and there are N processes.

* Let’s also assume that only one process initiates the

algorithm

* Bandwidth usage (total number of messages)
* O(N):Worst case = 3N -1; Best case = 2N.

* O(N) turnaround time.

Analysis

* Let's assume no fallures occur during the election

protocol itself, and there are N processes.

* When each process initiates the algorithm?

* O(N) messages In best-case.

N1

7

N4

\\

N2

N3

S

/

N election messages generates at
the start of algorithm.
Only one survives, and completes
a full round.

* N-I| messages.
One round for the elected
message

* N messages.
Total: 3N -1 messages

Analysis

* Let's assume no fallures occur during the election

protocol itself, and there are N processes.

* When each process initiates the algorithm?

* O(N) messages In best-case.

* O(N?) in worst-case.

N1

(7

N4

N

N2

NS

N3

/

N election messages generates at
the starts of algorithm.

N - | survive the next time step.
N — 2 survive the next time step.

Analysis

* Let's assume no fallures occur during the election
protocol itself, and there are N processes.
* When each process initiates the algorithm?
* O(N) messages In best-case.
« O(N?) messages in worst-case.

* O(N) turnaround time.

Correctness

* Assuming no process falls.

* Safety:

* Process with highest attribute elected by all nodes.

e | Iveness:

* Election completes within 3N — | message transmission times.

Handling Failures

/}Initiates the election

/ N\

(7

Ng¢ \/
Crash

Handling failures

e Use the failure detector;

* A process can detect failure of N8O via its own local failure detector:
* Repair the ring.
* Stop forwarding Election:80 message.
* Start a new run of leader election.

Handling Failures

elected = 32 Initiates the election
elected = 32

Initiates re-

election ected = 32

elected = 32

\ K |8[\/'
Crash‘\ elected = 32

Handling failures

* Use the failure detector.

* A process can detect failure of N8O via its own local failure detector:
* Repair the ring.
* Stop forwarding Election:80 message.
* Start a new run of leader election.

* But failure detectors cannot be both complete and accurate.
* Incomplete FD => N8O’s faillure might be missed .

What happens if a process failure
is undetected?

/}Initiates the election

/ N\

(7

Ng¢ \/
Crash

What happens if a process failure
is undetected?

[

No
“elected”
message

generated.
Crash

/}Initiates the election

N\

Algorithm does not

terminate.

/

Ng¢ \/

| iveness violated.

Handling failures

* Use the failure detector.
* A process can detect failure of N8O via its own local failure detector:
* Repair the ring.
* Stop forwarding Election:80 message.
* Start a new run of leader election.
* But failure detectors cannot be both complete and accurate.
* Incomplete FD => N8O’s faillure might be missed

* violation of liveness.
* |Inaccurate FD => N80 mistakenly detected as failed

What can happen if an alive process
is detected as failed!?

/}Initiates the election

[A

(7

What can happen if an alive process
is detected as failed!?

What can happen if an alive process
is detected as failed!?

Elected: 80 \/f
elected = 80 \/

What can happen if an alive process
is detected as failed!?

Elected: 80 \/f
elected = 80 \/

What can happen if an alive process
is detected as failed!?

elected = 32

Inaccurately

[

detects N8O
has failed

Initiates re-
election

_——>

Elected:

\
electedv= 80 \/

o0

ected =32

elected = 32

N\

elected = 32

-
-
\-——’

/

elected = 32

Safety has
been violated.

Fixing for failures

* Use the failure detector.
* A process can detect failure of N8O via its own local failure detector:
* Repair the ring.
* Stop forwarding Election:80 message.
* Start a new run of leader election.
* But failure detectors cannot be both complete and accurate.
* Incomplete FD => N8O’s faillure might be missed

* violation of liveness.

* |Inaccurate FD => N80 mistakenly detected as failed
* new ring will be constructed without N80.
* a process with lower attribute will be selected.

* violation of safety.

Classical Election Algorithms

* Ring election algorithm

* Bully algorithm

Bully algorithm

* Explicitly build in the notion of timeouts into the algorithm.

* Let's assume (for simplicity of exposition) that the attribute

based on which leader is elected Is the process id.

* Before discussing Bully algorithm, let’s first discuss a simpler
(related) algorithm.....

Multicast-based algorithm

* Start an election
* Multicast <election, my ID> to all processes
* |f receive <agree> from all processes, then elected
* Multicast <coordinator, my ID>
* |f receive <disagree> from any process
* Give up election

* Receive <election, ID> from process p
* fID>mylD
* Send <agree> to p (unicast)
* IfID <myID
* Send <disagree> to p
* Start election (if not already running)

 What about failures!?

Multicast-based algorithm

* Start an election
* Multicast <election, my ID> to all processes
* If receive <agree> from all processes or timeout, then elected
* Multicast <coordinator, my ID>
* |f receive <disagree> from any process
* Give up election

* Receive <election, ID> from process p
* fID>mylD
* Send <agree> to p (unicast)
* IfID <myID
* Send <disagree> to p
* Start election (if not already running)

e Can we improve on this!

Multicast-based algorithm

* Start an election
* Multicast <election, my ID> to all processes
* |f recetve<asree>dromallprecessesertimeout, then elected
* Multicast <coordinator, my ID>
* |f receive <disagree> from any process
* Give up election

* Receive <election, ID> from process p

D =miD
+Send—<agree>—top{untcast)

* IfID <myID
* Send <disagree> to p
* Start election (if not already running)

e Can we improve on this!

Bully Algorithm

* All processes know other process’ ids.
* Do not need to multicast election to all processes.

* Only to processes with higher id.

Bully Algorithm

* When a process wants to Initiate an election

* if it knows its id is the highest

* it elects itself as coordinator, then sends a Coordinator message to

all processes with lower identifiers. Election is completed.
* else
* it initiates an election by sending an Election message

* (contd.)

Bully Algorithm (2)

* else it initiates an election by sending an Election message
* Sends it to only processes that have a higher id than itself.

* if receives no answer within timeout, calls itself leader and sends

Coordinator message to all lower id processes. Election completed.

* if an answer received however, then there is some non-faulty
higher process => so, wait for coordinator message. If none

received after another timeout, start a new election run.

* A process that receives an Election message replies with disagree
message, and starts its own leader election protocol (unless it has

already done so).

Bully Algorithm: Example

P2 initiates election after detecting P5’s failure.

Elegtion fon disadree E|eCt ion
@ @ EIect ion
Election
1. P2 initiates election 2. P2 receives "replies 3. P3 & P4 initiate election
K@ R zzi
4. P3 receives reply 5. P4 receives no 5. P4 announces itself

reply

What if P4 fails after step 3!

Bully Algorithm: Example

P2 initiates election after detecting P5’s failure.

Elegtion fon disadree E|eCt ion
@ @ EIect ion
Election
1. P2 initiates election 2. P2 receives "replies 3. P3 & P4 initiate election
K@ R zzi
4. P3 receives reply 5. P4 receives no 5. P4 announces itself

reply

What if P4 fails after step 4!

Bully Algorithm (2)

* else it initiates an election by sending an Election message
* Sends it to only processes that have a higher id than itself.

* if receives no answer within timeout, calls itself leader and sends

Coordinator message to all lower id processes. Election completed.

* if an answer received however, then there is some non-faulty
higher process => so, wait for coordinator message. If none

received after another timeout, start a new election run.

* A process that receives an Election message replies with disagree
message, and starts its own leader election protocol (unless it has

already done so).

Timeout values

* Assume the one-way message transmission time (T) is known.

* First timeout value (when the process that has initiated election waits for the
first response)

* Must be set as accurately as possible.

 Ifitis too small,a lower id process can declare itself to be the coordinator
even when a higher id process is alive.

* What should be the first timeout value be, given the above assumption?
e 2T + (processing time) = 2T

* When the second timeout happens (after ‘disagree’ message), election is re-
started.

* A very small value will lead to extra “Election” messages.
* A suitable option is to use the worst-case turnaround time.

Analysis

* Best-case
* Second-highest id detects leader failure
* Highest remaining id initiates election.
* Sends (N-2) Coordinator messages
* Turnaround time: | message transmission time (T)

* Worst-case: For simplicity, assume no failures after a process calls for election.
* Turnaround time: 4 message transmission times (4T)
* if any lower id process detects faillure and starts election.

Bully Algorithm: Example

P2 initiates election after detecting P5’s failure.

-

®
Q ion
X

1. P2 initiates election

Elgction

r

disagre

i disagree

Election

Election
Election

2. P2 receives "replies

3. P3 & P4 initiate election

5. P4 receives no
reply
P4 waits for T more time

after P2 receives its
“disagree” message.

5. P4 announces itself

-

Analysis

* Best-case
* Second-highest id detects leader failure
* Highest remaining id initiates election.
* Sends (N-2) Coordinator messages
* Turnaround time: | message transmission time

* Worst-case: For simplicity, assume no failures after a process calls for election.
* Turnaround time: 4 message transmission times
* if any lower id process detects faillure and starts election.

* Election + (disagree & Election) + (Timeout —T) + Coordinator
* When the process with the lowest id in the system detects failure.

* (N-1) processes altogether begin elections, each sending messages to
processes with higher ids.

* i-th highest id process sends (i-1) election messages

* Number of Election messages
=N-1 + N2+ ...+ 1 =(N-D*N/2 = O(N?)

Correctness

* In synchronous system model.

* Set timeout accurately using known bounds on network delays
and processing times.

* Satisfies safety and liveness.

* In asynchronous system model:
* Failure detectors cannot be both accurate and complete.
* Either liveness and safety Is violated.

Why is Election so hard!?

* Because It is related to the consensus problem!

* If we could solve election, then we could solve consensus!
* Elect a process, use its id's last bit as the consensus decision.

* But (as we will see in next week’s class) consensus Is impossible In
asynchronous systems, so Is election!

Summary

* | eader election is an important problem in distributed
system.

* Crucial for implementing any centralized algorithm.

* Two classical algorithms:
* Ring election algorithm and Bully algorithm

* Hard to guarantee correctness in an asynchronous system
with failures.

