
Distributed Systems

CS425/ECE428

02/26/2020

Today’s agenda

•Wrap-up Leader Election
• Chapter 15.3
• Algorithms for leader election

• Acknowledgement:
• Materials derived from Prof. Indy Gupta and Prof. Nikita Borisov.

Logistics

• Midterm I:
• March 2nd, Monday
• 7-9pm
• 1002 ECE Building
• Syllabus:

• Up to and including Mutual Exclusion.
• Midterm topics review in next class (Friday, Feb 28th).

• HW3:
• Release date has been postponed to next week.
• Updated (tentative) HW schedule will be posted on the website.

Recap: Mutual Exclusion

• Mutual exclusion important problem in distributed
systems.

• Ensure at most one process is executing a piece of code
(critical section) at a given point in time.

• Four classical algorithms:
• Central server-based
• Ring-based
• Ricart-Agrawala
• Maekawa

Leader Election Problem

• In a group of processes, elect a Leader to undertake special tasks
• And let everyone know in the group about this Leader

• What happens when a leader fails (crashes)
• Some process detects this (using a Failure Detector!)
• Then calls for a new election.

• Goal of an election algorithm:
1. Elect one leader only among the non-faulty processes
2. All non-faulty processes agree on who is the leader

Election Problem, Formally
• A run of the election algorithm must always guarantee:
• Safety: For all non-faulty processes p:

• p has elected:
• (q: a particular non-faulty process with the best attribute value)
• or Null

• Liveness: For all election runs:
• election run terminates
• & for all non-faulty processes p: p’s elected is not Null

• At the end of the election protocol, the non-faulty process with the
best (highest) election attribute value is elected.
• Common attribute : leader has highest id
• Other attribute examples: leader has highest IP address, or fastest cpu, or most

disk space, or most number of files, etc.

Calling for an Election

• Any process can call for an election.

• A process can call for at most one election at a time.

• Multiple processes are allowed to call an election simultaneously.
• All of them together must yield only a single leader

• The result of an election should not depend on which process
calls for it.

System Model

• N processes.
• Messages are eventually delivered.
• Failures may occur during the election protocol.
• Each process has a unique id.
• Each process has a unique attribute (based on which Leader is elected).
• If two processes have the same attribute, combine the attribute with the

process id to break ties.

Classical Election Algorithms

• Ring election algorithm

• Bully algorithm

Classical Election Algorithms

• Ring election algorithm

• Bully algorithm

Ring Election Algorithm

• N processes are organized in a logical ring
• All messages are sent clockwise around the ring.

N80

N32

N5

N12

N6

N3

Ring Election Protocol (basic version)

• When Pi start election
• send election message with Pi’s <attri, i> to ring successor.

• When Pj receives message (election, <attrx, x>) from predecessor
• If (attrx, x) > (attrj, j):

• forward message (election, <attrx, x>) to successor
• If (attrx, x) < (attrj, j)

• send (election, <attrj, j>) to successor
• If (attrx, x) = (attrj, j) : Pj is the elected leader (why?)

• send elected message containing Pj’s id.
• elected message forwarded along the ring until it reaches the leader.

Initiates the election

Election: 3

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

Ring Election: Example

Initiates the election

Election: 32

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

Ring Election: Example

Initiates the election

Election: 32Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

Ring Election: Example

Initiates the election

Election: 80

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

Ring Election: Example

Initiates the election

Election: 80

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

Ring Election: Example

Initiates the election

Election: 80

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

Ring Election: Example

Initiates the election

Election: 80
Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

Ring Election: Example

Initiates the election

Elected: 80

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

Ring Election: Example

Initiates the election

Elected: 80

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

elected = 80

Ring Election: Example

Initiates the election

Elected: 80
Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

elected = 80

elected = 80

elected = 80

elected = 80

elected = 80

Ring Election: Example

Initiates the election

Goal: Elect highest id process as leader

N80

N32

N5

N12

N6

N3

elected = 80

elected = 80

elected = 80

elected = 80

elected = 80elected = 80

Ring Election: Example

Ring Election Protocol (basic version)

• When Pi start election
• send election message with Pi’s <attri, i> to ring successor.

• When Pj receives message (election, <attrx, x>) from predecessor
• If (attrx, x) > (attrj, j):

• forward message (election, <attrx, x>) to successor
• If (attrx, x) < (attrj, j)

• send (election, <attrj, j>) to successor
• If (attrx, x) = (attrj, j) : Pj is the elected leader (why?)

• send elected message containing Pj’s id.
• elected message forwarded along the ring until it reaches the leader.

What happens when multiple processes call for an election?

Initiates the election

Election: 80 sent twice.
Elected: 80 also sent twice.

N80

N32

N5

N12

N6

N3

Ring Election: Example

Initiates the election

Ring Election Protocol [Chang & Roberts’79]

• When Pi start election
• send election message with Pi’s <attri, i> to ring successor.
• set state to participating

• When Pj receives message (election, <attrx, x>) from predecessor
• If (attrx, x) > (attrj, j):

• forward message (election, <attrx, x>) to successor
• set state to participating

• If (attrx, x) < (attrj, j)
• If (not participating):

• send (election, <attrj, j>) to successor
• set state to participating

• If (attrx, x) = (attrj, j) : Pj is the elected leader (why?)
• send elected message containing Pj’s id.

• elected message forwarded along the ring until it reaches the leader.
• Set state to not participating when an elected message is received.

Initiates the election

Election: 80 and Elected: 80
sent only once.

N80

N32

N5

N12

N6

N3

Ring Election: Example

Initiates the election

Analysis

• Let’s assume no failures occur during the election
protocol itself, and there are N processes.

• Let’s also assume that only one process initiates the
algorithm

• Bandwidth usage: Total number of messages sent.

• Turnaround time: The number of serialized message
transmission times between the initiation and termination
of a single run of the algorithm.

Worst-case

Initiates the election

N80

N32

N5

N12

N6

N3

When the initiator is the
ring successor of the
would-be leader.

Worst-case

Initiates the election

N80

N32

N5

N12

N6

N3

• (N-1) messages for Election message to
get from N6 to N80.

• N messages for Election message to
circulate around ring without message
being changed.

• N messages for Elected message to
circulate around the ring

• No. of messages: (3N-1)

• Turnaround time: (3N-1) message
transmission times

Best-case

Initiates the
election

N80

N32

N5

N12

N6

N3

When the initiator is the
would-be leader.

Best-case

Initiates the
election

N80

N32

N5

N12

N6

N3
When the initiator is the would-
be leader.

No. of messages: 2N

Turnaround time:
2N message transmission times

Analysis
• Let’s assume no failures occur during the election

protocol itself, and there are N processes.

• Let’s also assume that only one process initiates the
algorithm

• Bandwidth usage (total number of messages)
• O(N): Worst case = 3N -1; Best case = 2N.

• O(N) turnaround time.

Analysis
• Let’s assume no failures occur during the election

protocol itself, and there are N processes.

• When each process initiates the algorithm?
• O(N) messages in best-case.

N1

N2

N3

N4

• N election messages generates at
the start of algorithm.

• Only one survives, and completes
a full round.
• N-1 messages.

• One round for the elected
message
• N messages.

• Total: 3N -1 messages

Analysis
• Let’s assume no failures occur during the election

protocol itself, and there are N processes.

• When each process initiates the algorithm?
• O(N) messages in best-case.
• O(N2) in worst-case.

N1

N2

N3

N4

• N election messages generates at
the starts of algorithm.

• N - 1 survive the next time step.
• N – 2 survive the next time step.
• ….

Analysis
• Let’s assume no failures occur during the election

protocol itself, and there are N processes.

• When each process initiates the algorithm?
• O(N) messages in best-case.
• O(N2) messages in worst-case.
• O(N) turnaround time.

Correctness

• Assuming no process fails.

• Safety:
• Process with highest attribute elected by all nodes.

• Liveness:
• Election completes within 3N – 1 message transmission times.

Initiates the election

Crash
N80

N32

N5

N12

N6

N3

Handling Failures

Election: 80

Handling failures
• Use the failure detector.
• A process can detect failure of N80 via its own local failure detector:
• Repair the ring.
• Stop forwarding Election:80 message.
• Start a new run of leader election.

Initiates the election

Crash
N80

N32

N5

N12

N6

N3

Handling Failures

Election: 80

Initiates re-
election elected = 32

elected = 32
elected = 32

elected = 32

elected = 32

Handling failures
• Use the failure detector.
• A process can detect failure of N80 via its own local failure detector:
• Repair the ring.
• Stop forwarding Election:80 message.
• Start a new run of leader election.

• But failure detectors cannot be both complete and accurate.
• Incomplete FD => N80’s failure might be missed .

Initiates the election

Crash
N80

N32

N5

N12

N6

N3

What happens if a process failure
is undetected?

Election: 80

Initiates the election

Crash
N80

N32

N5

N12

N6

N3

What happens if a process failure
is undetected?

Election: 80

No
“elected”
message

generated.

Algorithm does not
terminate.

Liveness violated.

Handling failures
• Use the failure detector.
• A process can detect failure of N80 via its own local failure detector:
• Repair the ring.
• Stop forwarding Election:80 message.
• Start a new run of leader election.

• But failure detectors cannot be both complete and accurate.
• Incomplete FD => N80’s failure might be missed

• violation of liveness.
• Inaccurate FD => N80 mistakenly detected as failed

Initiates the election

N80

N32

N5

N12

N6

N3

What can happen if an alive process
is detected as failed?

Election: 80

N80

N32

N5

N12

N6

N3

What can happen if an alive process
is detected as failed?

Election: 80

N80

N32

N5

N12

N6

N3

What can happen if an alive process
is detected as failed?

Elected: 80

elected = 80

N80

N32

N5

N12

N6

N3

What can happen if an alive process
is detected as failed?

Elected: 80

elected = 80

Initiates re-
election

Inaccurately
detects N80
has failed

N80

N32

N5

N12

N6

N3

What can happen if an alive process
is detected as failed?

Elected: 80

elected = 80

elected = 32

elected = 32 elected = 32

elected = 32

elected = 32

Safety has
been violated.

Fixing for failures
• Use the failure detector.
• A process can detect failure of N80 via its own local failure detector:
• Repair the ring.
• Stop forwarding Election:80 message.
• Start a new run of leader election.

• But failure detectors cannot be both complete and accurate.
• Incomplete FD => N80’s failure might be missed

• violation of liveness.
• Inaccurate FD => N80 mistakenly detected as failed

• new ring will be constructed without N80.
• a process with lower attribute will be selected.
• violation of safety.

Classical Election Algorithms

• Ring election algorithm

• Bully algorithm

Bully algorithm

• Explicitly build in the notion of timeouts into the algorithm.

• Let’s assume (for simplicity of exposition) that the attribute
based on which leader is elected is the process id.

• Before discussing Bully algorithm, let’s first discuss a simpler
(related) algorithm…..

Multicast-based algorithm
• Start an election

• Multicast <election, my ID> to all processes
• If receive <agree> from all processes, then elected

• Multicast <coordinator, my ID>
• If receive <disagree> from any process

• Give up election

• Receive <election, ID> from process p
• If ID > my ID

• Send <agree> to p (unicast)
• If ID < my ID

• Send <disagree> to p
• Start election (if not already running)

• What about failures?

Multicast-based algorithm
• Start an election

• Multicast <election, my ID> to all processes
• If receive <agree> from all processes or timeout, then elected

• Multicast <coordinator, my ID>
• If receive <disagree> from any process

• Give up election

• Receive <election, ID> from process p
• If ID > my ID

• Send <agree> to p (unicast)
• If ID < my ID

• Send <disagree> to p
• Start election (if not already running)

• Can we improve on this?

Multicast-based algorithm
• Start an election

• Multicast <election, my ID> to all processes
• If receive <agree> from all processes or timeout, then elected

• Multicast <coordinator, my ID>
• If receive <disagree> from any process

• Give up election

• Receive <election, ID> from process p
• If ID > my ID

• Send <agree> to p (unicast)
• If ID < my ID

• Send <disagree> to p
• Start election (if not already running)

• Can we improve on this?

Bully Algorithm

• All processes know other process’ ids.

• Do not need to multicast election to all processes.

• Only to processes with higher id.

Bully Algorithm

•When a process wants to initiate an election
• if it knows its id is the highest
• it elects itself as coordinator, then sends a Coordinator message to

all processes with lower identifiers. Election is completed.
• else

• it initiates an election by sending an Election message
• (contd.)

Bully Algorithm (2)

• else it initiates an election by sending an Election message
• Sends it to only processes that have a higher id than itself.
• if receives no answer within timeout, calls itself leader and sends

Coordinator message to all lower id processes. Election completed.
• if an answer received however, then there is some non-faulty

higher process => so, wait for coordinator message. If none
received after another timeout, start a new election run.

• A process that receives an Election message replies with disagree

message, and starts its own leader election protocol (unless it has
already done so).

Bully Algorithm: Example

disagree
disagree

P1

P2

P3

P4

P0

P5

1. P2 initiates election 2. P2 receives "replies

P1

P2

P3

P4

P0

P5

3. P3 & P4 initiate election

P1

P2

P3

P4

P0

P5

P1

P2

P3

P4

P0

P5

4. P3 receives reply

ElectionElection

Election
Election

Election

P1

P2

P3

P4

P0

P5

5. P4 receives no
reply

P1

P2

P3

P4

P0

P5

5. P4 announces itself

coordin
ator

What if P4 fails after step 3?

P2 initiates election after detecting P5’s failure.

disagree

Bully Algorithm: Example

disagree
disagree

P1

P2

P3

P4

P0

P5

1. P2 initiates election 2. P2 receives "replies

P1

P2

P3

P4

P0

P5

3. P3 & P4 initiate election

P1

P2

P3

P4

P0

P5

P1

P2

P3

P4

P0

P5

4. P3 receives reply

disagree

ElectionElection

Election
Election

Election

P1

P2

P3

P4

P0

P5

5. P4 receives no
reply

P1

P2

P3

P4

P0

P5

5. P4 announces itself

coordin
ator

What if P4 fails after step 4?

P2 initiates election after detecting P5’s failure.

Bully Algorithm (2)

• else it initiates an election by sending an Election message
• Sends it to only processes that have a higher id than itself.
• if receives no answer within timeout, calls itself leader and sends

Coordinator message to all lower id processes. Election completed.
• if an answer received however, then there is some non-faulty

higher process => so, wait for coordinator message. If none

received after another timeout, start a new election run.

• A process that receives an Election message replies with disagree

message, and starts its own leader election protocol (unless it has
already done so).

Timeout values
• Assume the one-way message transmission time (T) is known.

• First timeout value (when the process that has initiated election waits for the
first response)
• Must be set as accurately as possible.

• If it is too small, a lower id process can declare itself to be the coordinator
even when a higher id process is alive.

• What should be the first timeout value be, given the above assumption?
• 2T + (processing time) ≈ 2T

• When the second timeout happens (after ‘disagree’ message), election is re-
started.
• A very small value will lead to extra “Election” messages.
• A suitable option is to use the worst-case turnaround time.

Analysis
• Best-case

• Second-highest id detects leader failure
• Highest remaining id initiates election.

• Sends (N-2) Coordinator messages
• Turnaround time: 1 message transmission time (T)

• Worst-case: For simplicity, assume no failures after a process calls for election.
• Turnaround time: 4 message transmission times (4T)

• if any lower id process detects failure and starts election.

Bully Algorithm: Example

disagree
disagree

P1

P2

P3

P4

P0

P5

1. P2 initiates election 2. P2 receives "replies

P1

P2

P3

P4

P0

P5

3. P3 & P4 initiate election

P1

P2

P3

P4

P0

P5

P1

P2

P3

P4

P0

P5

4. P3 receives reply

disagree

ElectionElection

Election
Election

Election

P1

P2

P3

P4

P0

P5

5. P4 receives no
reply

P1

P2

P3

P4

P0

P5

5. P4 announces itself

coordin
ator

P4 waits for T more time
after P2 receives its
“disagree” message.

T T

T T

P2 initiates election after detecting P5’s failure.

Analysis
• Best-case

• Second-highest id detects leader failure
• Highest remaining id initiates election.

• Sends (N-2) Coordinator messages
• Turnaround time: 1 message transmission time

• Worst-case: For simplicity, assume no failures after a process calls for election.
• Turnaround time: 4 message transmission times

• if any lower id process detects failure and starts election.
• Election + (disagree & Election) + (Timeout –T) + Coordinator

• When the process with the lowest id in the system detects failure.
• (N-1) processes altogether begin elections, each sending messages to

processes with higher ids.
• i-th highest id process sends (i-1) election messages
• Number of Election messages

= N-1 + N-2 + … + 1 = (N-1)*N/2 = O(N2)

Correctness

• In synchronous system model:
• Set timeout accurately using known bounds on network delays

and processing times.
• Satisfies safety and liveness.

• In asynchronous system model:
• Failure detectors cannot be both accurate and complete.
• Either liveness and safety is violated.

• Because it is related to the consensus problem!

• If we could solve election, then we could solve consensus!
• Elect a process, use its id’s last bit as the consensus decision.

• But (as we will see in next week’s class) consensus is impossible in
asynchronous systems, so is election!

Why is Election so hard?

Summary

• Leader election is an important problem in distributed
system.
• Crucial for implementing any centralized algorithm.

• Two classical algorithms:
• Ring election algorithm and Bully algorithm

• Hard to guarantee correctness in an asynchronous system
with failures.

