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Today’s agenda

•Wrap-up Leader Election
• Chapter 15.3
• Algorithms for leader election

• Acknowledgement:
• Materials derived from Prof. Indy Gupta and Prof. Nikita Borisov.



Logistics

• Midterm I:
• March 2nd, Monday
• 7-9pm
• 1002 ECE Building
• Syllabus: 

• Up to and including Mutual Exclusion.
• Midterm topics review in next class (Friday, Feb 28th).

• HW3:
• Release date has been postponed to next week. 
• Updated (tentative) HW schedule will be posted on the website. 



Recap: Mutual Exclusion

• Mutual exclusion important problem in distributed 
systems.

• Ensure at most one process is executing a piece of code 
(critical section) at a given point in time.

• Four classical algorithms:
• Central server-based
• Ring-based
• Ricart-Agrawala
• Maekawa



Leader Election Problem

• In a group of processes, elect a Leader to undertake special tasks
• And let everyone know in the group about this Leader 

• What happens when a leader fails (crashes)
• Some process detects this (using a Failure Detector!)
• Then calls for a new election.

• Goal of an election algorithm:
1. Elect one leader only among the non-faulty processes
2. All non-faulty processes agree on who is the leader



Election Problem, Formally
• A run of the election algorithm must always guarantee:
• Safety: For all non-faulty processes p: 

• p has elected: 
• (q: a particular non-faulty process with the best attribute value) 
• or Null

• Liveness: For all election runs: 
• election run terminates
• & for all non-faulty processes p: p’s elected is not Null

• At the end of the election protocol, the non-faulty process with the 
best (highest) election attribute value is elected. 
• Common attribute : leader has highest id
• Other attribute examples: leader has highest IP address, or fastest cpu, or most 

disk space, or most number of files, etc. 



Calling for an Election

• Any process can call for an election.

• A process can call for at most one election at a time.

• Multiple processes are allowed to call an election simultaneously.
• All of them together must yield only a single leader

• The result of an election should not depend on which process 
calls for it.



System Model

• N processes. 
• Messages are eventually delivered.
• Failures may occur during the election protocol. 
• Each process has a unique id.
• Each process has a unique attribute (based on which Leader is elected).
• If two processes have the same attribute, combine the attribute with the 

process id to break ties. 



Classical Election Algorithms

• Ring election algorithm

• Bully algorithm 
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Ring Election Algorithm

• N processes are organized in a logical ring 
• All messages are sent clockwise around the ring. 
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Ring Election Protocol (basic version)

• When Pi start election 
• send election message with Pi’s <attri, i> to ring successor.

• When Pj receives message (election, <attrx, x>) from predecessor
• If (attrx, x) > (attrj, j): 

• forward message (election, <attrx, x>) to successor
• If (attrx, x) < (attrj, j) 

• send (election, <attrj, j>) to successor
• If (attrx, x) = (attrj, j) : Pj is the elected leader (why?) 

• send elected message containing Pj’s id.
• elected message forwarded along the ring until it reaches the leader.



Initiates the election
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Ring Election Protocol (basic version)

• When Pi start election 
• send election message with Pi’s <attri, i> to ring successor.

• When Pj receives message (election, <attrx, x>) from predecessor
• If (attrx, x) > (attrj, j): 

• forward message (election, <attrx, x>) to successor
• If (attrx, x) < (attrj, j) 

• send (election, <attrj, j>) to successor
• If (attrx, x) = (attrj, j) : Pj is the elected leader (why?) 

• send elected message containing Pj’s id.
• elected message forwarded along the ring until it reaches the leader.

What happens when multiple processes call for an election? 



Initiates the election

Election: 80 sent twice.
Elected: 80 also sent twice. 
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Initiates the election



Ring Election Protocol [Chang & Roberts’79]

• When Pi start election 
• send election message with Pi’s <attri, i> to ring successor.
• set state to participating

• When Pj receives message (election, <attrx, x>) from predecessor
• If (attrx, x) > (attrj, j): 

• forward message (election, <attrx, x>) to successor
• set state to participating

• If (attrx, x) < (attrj, j) 
• If (not participating): 

• send (election, <attrj, j>) to successor
• set state to participating

• If (attrx, x) = (attrj, j) : Pj is the elected leader (why?) 
• send elected message containing Pj’s id.

• elected message forwarded along the ring until it reaches the leader.
• Set state to not participating when an elected message is received.



Initiates the election

Election: 80 and Elected: 80 
sent only once. 
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Analysis

• Let’s assume no failures occur during the election 
protocol itself, and there are N processes.

• Let’s also assume that only one process initiates the 
algorithm

• Bandwidth usage: Total number of messages sent.

• Turnaround time: The number of serialized message 
transmission times between the initiation and termination 
of a single run of the algorithm.



Worst-case
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ring successor of the 
would-be leader.



Worst-case

Initiates the election
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• (N-1) messages for Election message to 
get from N6 to N80.

• N messages for Election message to 
circulate around ring without message 
being changed.

• N messages for Elected message to 
circulate around the ring

• No. of messages: (3N-1) 

• Turnaround time: (3N-1) message 
transmission times
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Best-case
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When the initiator is the would-
be leader.

No. of messages: 2N

Turnaround time: 
2N message transmission times



Analysis
• Let’s assume no failures occur during the election 

protocol itself, and there are N processes.

• Let’s also assume that only one process initiates the 
algorithm

• Bandwidth usage (total number of messages)
• O(N): Worst case = 3N -1;  Best case = 2N.

• O(N) turnaround time.



Analysis
• Let’s assume no failures occur during the election 

protocol itself, and there are N processes.

• When each process initiates the algorithm? 
• O(N) messages in best-case.

N1

N2

N3

N4

• N election messages generates at 
the start of  algorithm.

• Only one survives, and completes 
a full round.
• N-1 messages.

• One round for the elected 
message
• N messages.

• Total: 3N -1 messages 



Analysis
• Let’s assume no failures occur during the election 

protocol itself, and there are N processes.

• When each process initiates the algorithm? 
• O(N) messages in best-case.
• O(N2) in worst-case. 

N1
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N4

• N election messages generates at 
the starts of  algorithm.

• N - 1 survive the next time step.
• N – 2 survive the next time step.
• ….



Analysis
• Let’s assume no failures occur during the election 

protocol itself, and there are N processes.

• When each process initiates the algorithm? 
• O(N) messages in best-case.
• O(N2) messages in worst-case. 
• O(N) turnaround time.



Correctness

• Assuming no process fails.

• Safety: 
• Process with highest attribute elected by all nodes.

• Liveness:
• Election completes within 3N – 1 message transmission times.  
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Handling failures
• Use the failure detector.
• A process can detect failure of N80 via its own local failure detector: 
• Repair the ring.
• Stop forwarding Election:80 message. 
• Start a new run of leader election.
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Handling failures
• Use the failure detector.
• A process can detect failure of N80 via its own local failure detector: 
• Repair the ring.
• Stop forwarding Election:80 message. 
• Start a new run of leader election.

• But failure detectors cannot be both complete and accurate.
• Incomplete FD => N80’s failure might be missed . 
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is undetected?

Election: 80

No 
“elected” 
message 

generated.

Algorithm does not 
terminate. 

Liveness violated.



Handling failures
• Use the failure detector.
• A process can detect failure of N80 via its own local failure detector: 
• Repair the ring.
• Stop forwarding Election:80 message. 
• Start a new run of leader election.

• But failure detectors cannot be both complete and accurate.
• Incomplete FD => N80’s failure might be missed 

• violation of liveness. 
• Inaccurate FD => N80 mistakenly detected as failed 
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Fixing for failures
• Use the failure detector.
• A process can detect failure of N80 via its own local failure detector: 
• Repair the ring.
• Stop forwarding Election:80 message. 
• Start a new run of leader election.

• But failure detectors cannot be both complete and accurate.
• Incomplete FD => N80’s failure might be missed 

• violation of liveness.
• Inaccurate FD => N80 mistakenly detected as failed 

• new ring will be constructed without N80.
• a process with lower attribute will be selected.
• violation of safety. 



Classical Election Algorithms

• Ring election algorithm

• Bully algorithm 



Bully algorithm

• Explicitly build in the notion of timeouts into the algorithm.

• Let’s assume (for simplicity of exposition) that the attribute 
based on which leader is elected is the process id. 

• Before discussing Bully algorithm, let’s first discuss a simpler 
(related) algorithm…..



Multicast-based algorithm
• Start an election

• Multicast <election, my ID> to all processes
• If receive <agree> from all processes, then elected

• Multicast <coordinator, my ID>
• If receive <disagree> from any process

• Give up election

• Receive <election, ID> from process p
• If ID > my ID

• Send <agree> to p (unicast)
• If ID < my ID

• Send <disagree> to p
• Start election (if not already running)

• What about failures?
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Multicast-based algorithm
• Start an election

• Multicast <election, my ID> to all processes
• If receive <agree> from all processes or timeout, then elected

• Multicast <coordinator, my ID>
• If receive <disagree> from any process

• Give up election

• Receive <election, ID> from process p
• If ID > my ID

• Send <agree> to p (unicast)
• If ID < my ID

• Send <disagree> to p
• Start election (if not already running)

• Can we improve on this?



Bully Algorithm

• All processes know other process’ ids.

• Do not need to multicast election to all processes. 

• Only to processes with higher id. 



Bully Algorithm

•When a process wants to initiate an election
• if it knows its id is the highest
• it elects itself as coordinator, then sends a Coordinator message to 

all processes with lower identifiers. Election is completed.
• else 

• it initiates an election by sending an Election message 
• (contd.)



Bully Algorithm (2)

• else it initiates an election by sending an Election message 
• Sends it to only processes that have a higher id than itself.
• if receives no answer within timeout, calls itself leader and sends 

Coordinator message to all lower id processes. Election completed.
• if an answer received however, then there is some non-faulty 

higher process => so, wait for coordinator message. If none 
received after another timeout, start a new election run.

• A process that receives an Election message replies with disagree 

message, and starts its own leader election protocol (unless it has 
already done so).



Bully Algorithm: Example
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Bully Algorithm: Example
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Bully Algorithm (2)

• else it initiates an election by sending an Election message 
• Sends it to only processes that have a higher id than itself.
• if receives no answer within timeout, calls itself leader and sends 

Coordinator message to all lower id processes. Election completed.
• if an answer received however, then there is some non-faulty 

higher process => so, wait for coordinator message. If none 

received after another timeout, start a new election run.

• A process that receives an Election message replies with disagree 

message, and starts its own leader election protocol (unless it has 
already done so).



Timeout values
• Assume the one-way message transmission time (T) is known.

• First timeout value (when the process that has initiated election waits for the 
first response) 
• Must be set as accurately as possible. 

• If it is too small, a lower id process can declare itself to be the coordinator 
even when a higher id process is alive.

• What should be the first timeout value be, given the above assumption?
• 2T + (processing time) ≈ 2T

• When the second timeout happens (after ‘disagree’ message), election is re-
started. 
• A very small value will lead to extra “Election” messages. 
• A suitable option is to use the worst-case turnaround time. 



Analysis
• Best-case

• Second-highest id detects leader failure 
• Highest remaining id initiates election. 

• Sends (N-2) Coordinator messages
• Turnaround time: 1 message transmission time (T)

• Worst-case: For simplicity, assume no failures after a process calls for election. 
• Turnaround time: 4 message transmission times (4T)

• if any lower id process detects failure and starts election. 
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P4 waits for T more time 
after P2 receives its 
“disagree” message.

T T

T T

P2 initiates election after detecting P5’s failure. 



Analysis
• Best-case

• Second-highest id detects leader failure 
• Highest remaining id initiates election. 

• Sends (N-2) Coordinator messages
• Turnaround time: 1 message transmission time

• Worst-case: For simplicity, assume no failures after a process calls for election. 
• Turnaround time: 4 message transmission times 

• if any lower id process detects failure and starts election. 
• Election + (disagree & Election) + (Timeout –T) + Coordinator

• When the process with the lowest id in the system detects failure.
• (N-1) processes altogether begin elections, each sending messages to 

processes with higher ids.
• i-th highest id process sends (i-1) election messages
• Number of Election messages 

= N-1 + N-2 + … + 1 = (N-1)*N/2 = O(N2)



Correctness 

• In synchronous system model: 
• Set timeout accurately using known bounds on network delays 

and processing times. 
• Satisfies safety and liveness. 

• In asynchronous system model:
• Failure detectors cannot be both accurate and complete.
• Either liveness and safety is violated. 



• Because it is related to the consensus problem! 

• If we could solve election, then we could solve consensus!
• Elect a process, use its id’s last bit as the consensus decision.

• But (as we will see in next week’s class) consensus is impossible in 
asynchronous systems, so is election!

Why is Election so hard?



Summary 

• Leader election is an important problem in distributed 
system.
• Crucial for implementing any centralized algorithm. 

• Two classical algorithms:
• Ring election algorithm and Bully algorithm

• Hard to guarantee correctness in an asynchronous system 
with failures. 


