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Today’s agenda

•Wrap-up Mutual Exclusion
• Chapter 15.2
• Analysis of Ricart-Agrawala algorithm
• Maekawa algorithm

• Leader Elections
• Chapter 15.3

• Acknowledgement:
• Materials derived from Prof. Indy Gupta and Prof. Nikita Borisov.



Recap: Mutual Exclusion

• Mutual exclusion important problem in distributed 
systems.

• Ensure at most one process is executing a piece of code 
(critical section) at a given point in time.



Mutual exclusion in distributed systems

• Classical algorithms for mutual exclusion in distributed 
systems. 
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala algorithm
•Maekawa algorithm 



Mutual exclusion in distributed systems

• Classical algorithms for mutual exclusion in distributed 
systems. 
• Central server algorithm
• Satisfies safety, liveness, but not ordering.
• O(1) bandwidth, and O(1) client and synchronization delay.
• Central server is scalability bottleneck. 

• Ring-based algorithm
• Satisfies safety, liveness, but not ordering.
• Constantly uses bandwidth, O(N) client and synchronization delay

• Ricart-Agrawala algorithm
•Maekawa algorithm 



Ricart-Agrawala’s Algorithm
• enter() at process Pi
• set state to Wanted
• multicast “Request” <Ti, Pi> to all processes, where Ti = current Lamport

timestamp at Pi
• wait until all processes send back “Reply”
• change state to Held and enter the CS

• On receipt of a Request <Tj, j> at Pi (i ≠ j):
• if (state = Held) or (state = Wanted & (Ti, i) < (Tj, j)) 

// lexicographic ordering in (Tj, j), Ti is Lamport timestamp of Pi’s request

add request to local queue (of waiting requests)
else send “Reply” to Pj

• exit() at process Pi
• change state to Released and “Reply” to all queued requests.



Analysis: Ricart-Agrawala’s Algorithm

• Safety
• Two processes Pi and Pj cannot both have access to CS

• If they did, then both would have sent Reply to each other. 
• Thus, (Ti, i) < (Tj, j) and (Tj, j) < (Ti, i), which are together not 

possible.
• What if (Ti, i) < (Tj, j) and Pi replied to Pj’s request before it 

created its own request? 
• But then, causality and Lamport timestamps at Pi implies that Ti 

> Tj , which is a contradiction.
• So this situation cannot arise.



Analysis: Ricart-Agrawala’s Algorithm

• Safety
• Two processes Pi and Pj cannot both have access to CS.

• Liveness
• Worst-case: wait for all other (N-1) processes to send 

Reply.
• Ordering
• Requests with lower Lamport timestamps are granted 

earlier.



Analysis: Ricart-Agrawala’s Algorithm

• Safety
• Two processes Pi and Pj cannot both have access to CS.

• Liveness
• Worst-case: wait for all other (N-1) processes to send 

Reply.
• Ordering
• Requests with lower Lamport timestamps are granted 

earlier.



Analysis: Ricart-Agrawala’s Algorithm 

• Bandwidth: 
• 2*(N-1) messages per enter operation
• N-1 unicasts for the multicast request + N-1 replies
• Maybe fewer depending on the multicast mechanism.

• N-1 unicasts for the multicast release per exit operation 
• Maybe fewer depending on the multicast mechanism.

• Client delay: 
• one round-trip time

• Synchronization delay: 
• one message transmission time

• Client and synchronization delays have gone down to O(1). 

• Bandwidth usage is still high. Can we bring it down further? 



Mutual exclusion in distributed systems

• Classical algorithms for mutual exclusion in distributed 
systems. 
• Central server algorithm
• Ring-based algorithm
• Ricarta-Agrawala algorithm
•Maekawa algorithm 



Maekawa’s Algorithm: Key Idea

• Ricart-Agrawala requires replies from all processes in 
group.

• Instead, get replies from only some processes in group.

• But ensure that only one process is given access to CS 
(Critical Section) at a time.



Maekawa’sVoting Sets

• Each process Pi is associated with a voting set Vi (subset 
of processes).

• Each process belongs to its own voting set.

• The intersection of any two voting sets must be non-empty.



A way to construct voting sets

p1 p2

p3 p4

P1’s voting set = V1
V2

V3 V4

p1  p2
p3  p4

One way of doing this is to put N processes in a ÖN by ÖN  matrix and for 
each Pi, its voting set Vi = row containing Pi + column containing Pi. 

Size of voting set = 2*ÖN-1.



Maekawa: Key Differences From 
Ricart-Agrawala

• Each process requests permission from only its voting 
set members.
• Not from all

• Each process (in a voting set) gives permission to at 
most one process at a time.
• Not to all



Actions

• state = Released, voted = false
• enter() at process Pi:
• state = Wanted
• Multicast Request message to all processes in Vi
• Wait for Reply (vote) messages from all processes in Vi 

(including vote from self)
• state = Held

• exit() at process Pi:
• state = Released
• Multicast Release to all processes in Vi



Actions (contd.)

• When Pi receives a Request from Pj:
if (state == Held OR voted = true)

queue Request
else

send Reply to Pj and set voted = true



Actions (contd.)

• When Pi receives a Release from Pj:
if (queue empty)

voted = false
else

dequeue head of queue, say Pk

Send Reply only to Pk

voted = true



Size of  Voting Sets

• Each voting set is of size K.

• Each process belongs to M other voting sets.

• Maekawa showed that K=M=ÖN works best.



Optional self-study: Why ÖN ?
• Each voting set is of size K and each process belongs to M other voting sets.

• Total number of voting set members (processes may be repeated) = K*N

• But since each process is in M voting sets

• K*N = M*N => K = M   (1)

• Consider a process Pi

• Total number of voting sets = members present in Pi’s voting set and all their voting sets 
= (M-1)*K + 1

• All processes in group must be in above
• To minimize the overhead at each process (K), need each of the above members to be 

unique, i.e.,

• N = (M-1)*K + 1

• N = (K-1)*K + 1  (due to (1))
• K ~ ÖN



Size of  Voting Sets

• Each voting set is of size K.

• Each process belongs to M other voting sets.

• Maekawa showed that K=M=ÖN works best.

• Matrix technique gives a voting set size of 2*ÖN-1 = O(ÖN). 



Performance: Maekawa Algorithm

• Bandwidth
• 2K = 2ÖN messages per enter 
• K = ÖN messages per exit
• Better than Ricart and Agrawala’s (2*(N-1) and N-1 messages)
• ÖN quite small. N ~ 1 million => ÖN = 1K

• Client delay: 
• One round trip time

• Synchronization delay: 
• 2 message transmission times



Safety

• When a process Pi receives replies from all its voting 
set Vi members, no other process Pj could have 
received replies from all its voting set members Vj.
• Vi and Vj intersect in at least one process say Pk.
• But Pk sends only one Reply (vote) at a time, so it 

could not have voted for both Pi and Pj.



Liveness
• Does not guarantee liveness, since can have a deadlock.

• System of 6 processes {0,1,2,3,4,5}. 0,1,2 want to enter critical section:

• V0= {0, 1, 2}:

• 0, 2 send reply to 0, but 1 sends reply to 1;

• V1= {1, 3, 5}:

• 1, 3 send reply to 1, but 5 sends reply to 2;

• V2= {2, 4, 5}:

• 4, 5 send reply to 2, but 2 sends reply to 0;

• Now, 0 waits for 1’s reply, 1 waits for 5’s reply (5 waits for 2 to send a
release), and 2 waits for 0 to send a release. Hence, deadlock!



Analysis: Maekawa Algorithm

• Safety:
• When a process Pi receives replies from all its voting set Vi 

members, no other process Pj could have received replies 
from all its voting set members Vj.

• Liveness
• Not satisfied. Can have deadlock! 

• Ordering:
• Not satisfied. 



Breaking deadlocks
• Maekawa algorithm can be extended to break deadlocks. 
• Compare Lamport timestamps before replying (like Ricart-Agrawala).
• But is that enough? 

• System of 6 processes {0,1,2,3,4,5}. 0,1,2 want to enter critical section:

• V0= {0, 1, 2}: 0, 2 send reply to 0, but 1 sends reply to 1;

• V1= {1, 3, 5}: 1, 3 send reply to 1, but 5 sends reply to 2;

• V2= {2, 4, 5}: 4, 5 send reply to 2, but 2 sends reply to 0;
• Can still happen depending on which message is received earlier. 

• Say Pi’s request has a smaller timestamp than Pj. 
• If Pk receives Pj’s request after replying to Pi, send fail to Pj. 
• If Px receives Pi’s request after replying to Pj, send inquire to Pj.
• If Pj receives an inquire and at least one fail, it sends a relinquish to release 

locks, and deadlock breaks.



Handling deadlocks
• System of 6 processes {0,1,2,3,4,5}. 0,1,2 want to enter critical section:

• V0= {0, 1, 2}: 0, 2 send reply to 0, but 1 sends reply to 1;

• V1= {1, 3, 5}: 1, 3 send reply to 1, but 5 sends reply to 2;

• V2= {2, 4, 5}: 4, 5 send reply to 2, but 2 sends reply to 0;

• P1 will send inquire to itself when it receives P0’s request after its own.
• P2 will send fail to P1 when it receives P1’s request after P0. 
• P2 will send fail to itself when it receives its own request after P0. 
• P5 will send inquire to P2 when it receives P1’s request. 
• P1 will send relinquish to V1.  P1 will set “voted = false” and reply to P0. P5 

will remove P1’s request from its queue.
• P0 can now enter critical section. 
• P2 will send relinquish to V2. P5 and P4 will set “voted = false”. 



Mutual exclusion in distributed systems
• Classical algorithms for mutual exclusion in distributed systems. 
• Central server algorithm
• Satisfies safety, liveness, but not ordering.
• O(1) bandwidth, and O(1) client and synchronization delay.
• Central server is scalability bottleneck. 

• Ring-based algorithm
• Satisfies safety, liveness, but not ordering.
• Constant bandwidth usage, O(N) client and synchronization delay

• Ricart-Agrawala algorithm
• Satisfies safety, liveness, and ordering.
• O(N) bandwidth, O(1) client and synchronization delay.

• Maekawa algorithm 
• Satisfies safety, but not liveness and ordering. 
• O(ÖN) bandwidth, O(1) client and synchronization delay.



Today’s agenda

•Wrap-up Mutual Exclusion
• Chapter 15.2
• Analysis of Ricart-Agrawala algorithm
• Maekawa algorithm

• Leader Elections
• Chapter 15.3

• Acknowledgement:
• Materials largely derived from Prof. Indy Gupta.



Why Election?

• Example: Your Bank account details are replicated at a 
few servers, but one of these servers is responsible 
for receiving all reads and writes, i.e., it is the leader 
among the replicas
• What if there are two leaders per customer?
• What if servers disagree about who the leader is?
• What if the leader crashes?

Each of the above scenarios leads to inconsistency



More motivating examples

• The root server in a group of NTP servers. 

• The master in Berkeley algorithm for clock synchronization.

• In the sequencer-based algorithm for total ordering of 
multicasts, the “sequencer” = leader.

• The central server in the “central server algorithm” for mutual 
exclusion. 

• Other systems that need leader election: Apache Zookeeper, 
Google’s Chubby.



Leader Election Problem

• In a group of processes, elect a Leader to undertake special tasks
• And let everyone know in the group about this Leader 

• What happens when a leader fails (crashes)
• Some process detects this (using a Failure Detector!)
• Then what?

• Focus of this lecture: Election algorithm. Its goal:
1. Elect one leader only among the non-faulty processes
2. All non-faulty processes agree on who is the leader



Calling for an Election

• Any process can call for an election.

• A process can call for at most one election at a time.

• Multiple processes are allowed to call an election simultaneously.
• All of them together must yield only a single leader

• The result of an election should not depend on which process 
calls for it.



Election Problem, Formally
• A run of the election algorithm must always guarantee:
• Safety: For all non-faulty processes p: 

• p has elected: 
• (q: a particular non-faulty process with the best attribute value) 
• or Null

• Liveness: For all election runs: 
• election run terminates
• & for all non-faulty processes p: p’s elected is not Null

• At the end of the election protocol, the non-faulty process with the 
best (highest) election attribute value is elected. 
• Common attribute : leader has highest id
• Other attribute examples: leader has highest IP address, or fastest cpu, or most 

disk space, or most number of files, etc. 



System Model

• N processes. 
• Messages are eventually delivered.
• Failures may occur during the election protocol. 
• Each process has a unique id.
• Each process has a unique attribute (based on which Leader is elected).
• If two processes have the same attribute, combine the attribute with the 

process id to break ties. 



Next class: Classical Election 
Algorithms

• Ring election algorithm

• Bully algorithm 


