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Abstract—This work presents WRAITH, a compute substrate
that attempts to exploit available TLP and DLP in a power-
efficient manner by colocating a set of “virtual” RISC-V proces-
sors and a dataflow accelerator on a shared datapath.

I. PROJECT SUMMARY
A. Main Features

WRAITH contains a compute substrate consisting of 16
Processing Elements (PEs), arranged as a 4x4 2D mesh. 8
of these PEs are configured with 32-bit multipliers and 8 are
configured with 32-bit ALUs (supporting most standard RISC-
V ALU operations). Each PE can support up to 14 unique
actions. A 2x2 subcluster PEs share a register file, with banked
writes and all-way reads. There are two “scratchpad” banks,
each 2KB, which hold the input and output results of kernel
data respectively.

Two 5-stage RISC-V cores, implementing RV32IM are
located near the compute substrate. Each core has a pipelined,
2KB, direct-mapped, shared I/D-cache. These cores utilize the
compute mesh interface to perform multiplication. Provided
the mesh is configured to handle RISC-V multiplications, this
action can be performed even if the compute mesh is currently
processing a kernel. These RISC-V cores share a 6-cycle 32-
bit divider to fully implement the M specification.

All elements of WRAITH are managed by the Mesh and
Memory Management Unit (MMMU). The MMMU handles a
32-bit tri-state bus from an off-chip controller and responds to
memory requests from the RISC-V cores. When the off-chip
controller is ready to utilize the mesh, it utilizes a cooperative
protocol to receive the kernel for the mesh, along with the
kernel input data itself. The MMMU also handles CSR read
and write requests to inspect the functional state of the chip.

WRAITH fits onto a 1mm? square tile using a 65nm
process. It can support clock speeds up to SO0OMHz from an
external clock, with some test features limited to 200MHz.

B. High-Level Architecture

The WRAITH architecture is depicted in Figure [} At the
center is a CGRA-like mesh of processing elements (PEs).
Typical CGRA architectures tend to follow the ADRES [I1]]
scheme, where each PE has a separate PC and executes its
own program stored in a private configuration RAM. Care
must be taken in the configuration to ensure cycle-by-cycle
correctness during execution.

By contrast, WRAITH adopts a reactionary model for its
mesh. Rather than operating on a sequential program, PEs
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Fig. 1. WRAITH Architectural Diagram

instead generate responses to packets received from any of
their neighboring nodes. The protocol for doing so is described
in section Both execution and configuration tasks for a
PE are initiated by sending it a packet, meaning WRAITH’s
mesh does not need any explicit control logic.

Control logic is instead managed by two controller periph-
erals, the MMMU and a Scratchpad Memory controller. These
blocks work together to format input data and requests into a
format ingestible by the ingress ports of the mesh.

Below, we give more detailed architectural descriptions of
the various components utilized by WRAITH.

Processing Elements: Each processing element is a 3-stage
pipeline which takes an input packet from a 2-depth FIFO,
performs an operation, and generates an output packet to a
2-depth FIFO. See Figure [2| for a high level diagram.

The PE supports basic forwarding to mitigate data hazards,
and has stall controls if the destination egress FIFO is full
during operation. The multiplier supports 32-bit signed and
unsigned multiplication, compliant with the RISC-V M spec-
ification. The ALU supports all standard RV32I operations
except for s1t and srl.

Each PE is connected to up to 4 adjacent PEs, with boundary
PEs being connected to either the input/output scratchpad
banks or the RISC-V cores for multiplication. The layout is a
checkerboard of ALU and Multiplier PEs.

RISC-V Translation Units: WRAITH is equipped with two
RISC-V “Translation Units” (RVTU). Each RVTU is a stan-
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Fig. 2. Processing Element Pipeline

dard 5-stage pipeline core implementing RV32IM. However, in
the Execute stage, a multiplication pOP is translated into two
packets compliant with our mesh architecture. These packets
are injected into the mesh and the RVTU awaits a response.
This is our main proof of concept to show viable reuse of the
compute mesh during low utilization. For completeness of the
M specification, we included a 6-cycle 32-bit divider that is
shared between the two RVTUs. See Figure 3| for the modified
execute stage and shared cache changes.

Each RVTU has a pipelined, 2KB, direct-mapped, shared
I/D-cache. These caches do not support triggered cache-
flushes, as it is expected that this is done in software due
to their small size. The user is expected to keep the memory
sections of each RVTU’s program separate to avoid collision,
as caches are not coherent.

Each RVTU also has a dedicated IO reset pin, and a halt
CSR to indicate program completion. The reset pin also serves
as a disable pin of sorts, as the RVTU will not emit any
requests to any shared resources if it is held high.

Scratchpad Banks: WRAITH contains two 2KB banks
which handle input and output kernel data between the off-
chip controller and the compute mesh. The off-chip begins a
request by setting up CSRs to tell the scratchpad controller
which PE to send and expect data from, how many packets
are being set, and what PID should be used when sending the
packets into the mesh. Kernels can operate on up to 512 32-bit
words.

By default, the scratchpad controller is responsible for
adding the PID to the input data, which determines whether
the mesh is being configured or utilized. There is an alternative
mode to reduce the bit-depth of the packet payload and include
mixed-PIDs in the 32-bit word.

Once the scratchpad controller has received the correct num-
ber of packets, the off-chip controller can trigger a writeback
to flush the output scratchpad bank. Provided that the kernel
does not require pre-loaded constants each run, once the mesh
is programmed once, the off-chip controller can send multiple
cycles of data in succession.

Mesh and Memory Management Unit: The MMMU
handles the memory requests from the RVTUs, the scratchpad
banks, and the off-chip controller in a cooperative protocol.
The MMMU controls a 32-bit tristate bus, polling specific
pins to receive requests from off-chip. The MMMU contains
an arbiter which manages bus access contention between the
RISC-V cluster, the CSR file and the scratchpad banks.

Additionally, the MMMU manages two sets of CSR register
files: one written to by on-chip and read by off-chip, and one
read by on-chip and written to by off-chip. CSR requests are
given priority over kernel operations, which is given priority
over RVTU requests.

C. Physical Design

WRAITH utilizes a 1mm? tile using TSMC’s 65nm pro-
cess. There is a single clock domain which drives both the 10
ring and internal modules. WRAITH supports clock speeds up
to 500MHz, with some testing features limited to 200MHz.
The standard IO ring allots a 820 x 820um core area. We
were able to expand our core area to 844 x 844um with four
34 x 34pm triangular corners blocked for place and route. This
increased our usable area to 710024pm? from 672400um>
Before filling, we utilize 547602um? core area, resulting in
77% density. A general view of our physical design can be
seen in Figure [d while the triangular blockage we used can
be seen in Figure [3

Our estimated power usage at a S00MHz clock, with a 1.0V
core voltage:

e 158.4mW Internal Power
e 122.9mW Switching Power
e 255.2mW Leakage Powelﬂ

Our IO utilization is as follows, for a total of 52 pins:

e 32 pins for the inout tri-state bus

e 2 pins for RVTU resets

o 6 pins for Scratchpad Bank “fallback” mode

« 3 pins for inspecting the 10 Bridge FSM state
1 pin for power indication

e 2 pins for clock & reset

e 6 pins for power & ground pairs.

D. Design Choices

Reactive Mesh Architecture. CGRAs which adhere to the
ADRES architecture [[I] have a configuration RAM in each
processing element to determine what operation to do next.
Although this allows for more complex data orchestration
paradigms, it would have been infeasible to implement in
an area-efficient manner within the time constraints. Our
reactionary model vastly simplifies implementation details and
routing overhead, albeit at the cost of scheduling flexibility.

IThis does not include leakage induced by our register file IP blocks, as
the analysis reports 42W of leakage, which is erroneous.
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WRAITH Chip physical layout, with metal layers 7-9 hidden.

Packet Translation. One possible method to reuse multi-
pliers in the mesh would be a top-level configuration switch
on a processing element dedicating it to the CPU, effectively
removing it from the mesh. We decided that it would be
more flexible to translate multiplication instructions into mesh
packets. This consumes 5 of the PAT entries within the corre-
sponding PE, however the alternative would be to completely
remove it, so we feel that this was a better middle ground.

RVTU Caches. We chose a shared I/D cache with 128
entries of 128 bits each due to size constraints and minimum
supported configurations of the IP generator. We wouldn’t
be able to make a reasonably smaller cache for a dedicated
instruction cache without running into routing issues. 128
entries is the minimum number of entries one can generate
using ARM’s IP generators.

Split Scratchpad Banks. Common scratchpad architectures
in literature for CGRAs is usually one unified scratchpad cache

Fig. 5. A closeup of the corner blockage which permits expanded core area.

which handles both input and output data. Due to the reactive
nature of our mesh and wanting to simplify the memory bus
protocol as much as possible, we opted to split our scratchpad
banks into dedicated input and output banks. This simplified
the Scratchpad to Mesh interconnect without needing large
crossbars to support entry from any PE.

32-bit Bus. We realized that with CSRs, we needed very few
IO pins to configure our chip. This allowed us to make use of
a full 32-bit bus which gives substantial speed improvements
to loading kernel data and handling RISC-V cachelines.

E. Verification & Test Strategy

We verified our design using block-level test benches, and a
sophisticated top level test bench which completely simulates
an off-chip controller to configure and run kernels on the mesh
and run programs on the RVTUs.

We have a PE test bench which verified the configuration
and functional output of each PE, PE subcluster, and mesh over



the course of several test cases. We have an RVTU test bench
which verifies the RVTUs with a RVFI interface and Spike,
along with the shared divider and mesh interface. Finally,
our top level test bench configures and runs a mesh, whilst
handling memory requests from both RVTUs simultaneously,
with RVFI and Spike verification.

The top level testbench has several asynchronous tasks, that
snoop the bus and react to requests made by the RVTUs. It
also has a contention mechanism for all the potential off-chip
drivers (CSR Write, SPM Write, Cacheline Response), so as
to verify pseudo-random order of accesses. The top level test
bench also has a Post-PnR version which runs on the compiled
netlist of our design. This catches timing violations as well as
functional correctness after synthesis and Place and Route.

We have reserved some IO pins for DFT features of our
chip during bring-up. Notably, we have 3 pins which connect
directly to the MMMU'’s 10 Bridge to inspect the current state
of the controller FSM. We also have 6 pins to stream packets
in and out of the compute mesh, bypassing the scratchpad
banks or IO bridge in the event of unforeseen failure. This
is a rudimentary protocol which takes in a packet over 36
clock cycles and writes it out over 36 clock cycles. We also
have a single pin to indicate successful power delivery. These
control pins were false pathed in analysis, but we estimate
we can utilize them at speeds up to 200MHz without timing
violations.

FE. Initial Proposal Differences
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Fig. 6. Initial WRAITH Architectural Diagram

Our initial proposal diagram can be seen in Figure [6] We
had to make a few simplifying changes due to area constraints.
The largest one was our reduction of four cores to two, due to
the limitations we had generating smaller caches and generally
lack of total available area. We split our scratchpad banks to
reduce crossbar area and simplify the logic between the mesh
and the IO bridge.

We also simplified our mesh topology, initially each 2x2
subcluster had an all-to-all connection, but we reduced it down

to be entirely 2D. In part, this change was done due to moving
from having small, private register files within each PE to a
shared regfile among a subcluster. We also had 4-depth FIFOs
connecting each PE, but consumed far too much area, so we
reduced it to a 2-depth PE.

We also simplified the intended use of the mesh during
RVTU execution, limiting it down to just multiplication. In
the future, we hope that with larger area we can support more
RISC-V operations within the mesh with a lower latency.

Not all changes were simplifications however, we were able
to increase our IO bus from 16-bit to 32-bit, as we moved to
using CSRs for most control features. We also added support
for varying PIDs to support generation of non-linear kernel
routing.

Additionally, we were initially planning clock speeds of
100-200MHz, but were luckily able to achieve 500MHz across
the entire chip.

II. POST-SILICON VALIDATION PLAN

We expect the entire group to be involved with Post-
Silicon validation, to varying degrees. Our validation plan is
straightforward, due to the main interface with WRAITH being
a single 32-bit bus, resets, and some DFT signals. We will
port our Post-PnR test bench to an FPGA to act as an off-chip
controller. We will design a simple PCB to put our packaged
chip onto, with all signal wires connecting to the FPGA’S 10,
except for our LED indication pin and power.

We may also implement the IO bridge and portions of the
compute mesh on a secondary FPGA to perform some initial
testing prior to our chip’s delivery date in late February. During
this time, we will also design and program additional kernels
to test on our compute mesh.

Once we have the chips on a PCB, we will begin with
low-speed testing to verify the DFT features are working as
intended and we are receiving correct results from the mesh
and RVTUs. We will repeat these tests at higher clock speeds
until we reach our analyzed S00MHz or detect some failure.
We expect testing to be done in mid-April.

III. INDIVIDUAL CONTRIBUTIONS

o Prakhar

Scratchpad Memory/Controller RTL & Verification
IO Bridge Communication & CSR definitions

PE Mesh Verification

Full-System & Post-PnR Verification

o Ingi
— MMMU Bridge and Arbiter RTL & Verification
— PD/PnR Flow, Scripting, Tooling
— LVS Scripting, Closure & Signoff
e Pradyun
RVTU Cluster RTL & Verification
PE/Mesh Architecture, Golden Model & RTL
MMMU Bridge RTL
Full-System & Post-PnR Verification
Kernel design & Bitstream generation



e Sam

— PE/Mesh RTL & Verification

— RVTU Cache RTL

— PD/PnR Flow, Closure & Signoff

— Miscellaneous tooling & local tool execution

IV. MAJOR CHALLENGES
A. Post-PNR Testing

Our verification methodology definitely required significant
engineering effort during the Post-PNR phase. While the
behavorial testbench was fairly stable it did not account
for metastability and timing path delays in a design back-
annotated with the SDF timing annotations. This led to several
bugs that were time-consuming to solve, and made debugging
difficult, as it was impossible to know if the simulation
was failing due to issues with the design, or the testbench.
Additionally, the use of synthesis

1) wait: The systemverilog wait keyword evaluates be-
fore NBAs for every time event in the VCS simulator. As
such, the wait would evaluate on stale” signals, leading to
the testbench following an incorrect flow. Hardcoding a sanity
check with a fixed delay as a "hotfix” did not work either due
to metastability in FSM state registers. As such it took quite
some effort to determine a correct alternative.

2) Thread Starvation: The Post-PNR testbench utilized a
multitude of fork join tasks. Some of these were cacheline
handlers, which would be invoked at the start of the sim, and
would snoop/drive the bus to service RVTU cacheline requests,
and process cacheline flushes, while contending with other
tasks for the bus. Due to direct-mapped nature of the RVTU
caches - most of the bus traffic was for cacheline requests.
The tasks for this, would always win arbitration for the bus.
As such, the other tasks that checked mesh completion by
polling the CSRs would be starved of the bus, significantly
increasing the simulation runtime. As such, adding a wait of
a random duration between 1 - 64 cycles to the main loop
of the cacheline request handler task, enabled a more fair
utilization of the memory bus.

B. ARM SRAM Generation/Import

The SRAM generator had some rough edges, and we
consistently experienced issues when importing into Cadence
Virtuoso. This necessitated repeated SPICE netlist corrections,
which were done through a mixture of processing scripts
and manual adjustments where necessary. We had to re-
write an existing replace . py script due to its compatibility
with the Regfile-type Physical IP, which we chose due to its
smaller sense amplifier and increased synergy with our design
properties.

C. Kernel Mapping and Development

One of our greatest limitations, partially due to scheduling,
was the difficulty of modeling and mapping a variety of kernels
to our architecture. These limitations are primarily imposed by
data permanence issues that can come with subsequent packets

overwriting old data in the register file and the single-input-
stream model imposed by a unified SPM.

While we cannot support concurrent kernel execution, data
permanence is mitigated via a modulo register file scheduling
scheme. As our architecture supports varying PIDs, in the
kernel configuration and data encoding we rotate PIDs for
data bitstreams (for example, cycling through 8 distinct PIDs).
By doing so, we can ensure adjacent packets access and
write to different register file indices without any clobbering
concerns. The exact number of PIDs required to cycle through
varies based on the maximum effective pipeline depth of an
expressed kernel, and the age of the intermediate results it
requires. In practice, we have found success with naively
implementing windowing schemes (like for convolution of any
3-wide filter) or imposing relevant constraints on the kernel to
reduce required data lifetimes (1D convolution with an 8-wide
filter, but only if it has real roots).

V. DOCUMENTATION

This section discusses the design and properties of the
major components of WRAITH. The high-level architecture is
discussed in [Section [.B| and a diagram of these components
are shown in Figure

A. Memory Bus

As previously discussed, WRAITH requires a large amount
of memory transfer between itself and the off-chip components
of its surrounding system. Our design reuses a 32-bit wide
tristate bus for handshake and data, in order to avoid using
dedicated “in” and “out” buses. This allows an almost 1
word/cycle data rate for both input and output operations,
despite the limited number of signal I/O pins available (48).

The communication protocol used is somewhat inspired
by the PCI “Legacy” bus protocol, where only the essen-
tial signals are carried over (namely: CLK, and a subset
of AD[31:01]’s signel address and numerous data lines).
Other key features, such as the REQ# and GNT# signals, are
functionally reproduced by requiring a tighter degree of cou-
pling/cooperative interaction. For instance, device requests (for
memory read/write) are broadcast using the unified address-
data lines. Arbitration between requests initiated by WRAITH
and the off-chip host occurs according to a predefined format
for bus requests: as such, no explicit grant signal is required,
as devices assume the request priority order and shall not
contend for access to the tristate bus.

1) Limitations/Challenges: Before discussing our imple-
mentation of this specification, we would like to note here
that this design possess some consequences: some which
we anticipated, and others which were not initially clear.
First and foremost, our interface is inherently limited to the
assumption that the bus possesses no more than two bus
controllers; as such, this memory bus places limitations on
the systems in which WRAITH can be used. The introduction
of certain control overheads along with the high clock rate of
the signaling environment (due to the tri-state nature of the



bus) also impose some restrictions on the nature of the testing
environment.

Finally, the usage of a single data line led us to constrain
memory transfers to being contiguous rather than in the form
of several temporally-distinct “packets” (as can be accom-
plished in other protocols such as AXI4-Stream). As such,
the “pinned memory requirement” typical of certain processor-
accelerator integrated systems obtains a somewhat stronger
form, wherein memory must be coalesced in a buffer with
constant/predictable lookup in order to program the WRAITH
device. Note that this issue can be somewhat sidestepped
by the usage of multiple programming phases, at the cost
of increased runtime consumed by programming/configuration
tasks.

Unforeseen physical design considerations led us to make
RTL modifications late into the design phase, in order to
account for the potential for shorts on bus acquisition/release
not noticed during protocol design. The revised protocol is
presented here, which we believe does not suffer from (or min-
imally, is significantly less prone to) shorting/bus contention
issues. As such, the authors do not necessarily recommend the
re-creation of this system, instead offering it up for study.

Regardless, the bus protocol is functional and verified (both
behaviorally and post-PnR), and does accomplish its intended
goal of providing a multi-master bus with minimal control pin
overhead. The following section will describe the protocol we
settled on.

2) Memory Bus Protocol: For subsequent discussion, on-
chip shall refer to any request initiated by the WRAITH chip,
while off-chip shall refer to any request initiated by the off-
chip host.

The WRAITH system, together with its host core, require
the implementation of 8 distinct message types, which can be

seen in [Table 1l

TABLE I
WRAITH MEMORY BUS MESSAGE TYPES
Message Type Description Code
Requests initiated by off-chip host
Scratchpad Memory Write Write to scratchpad memory to provide 2

kernel configuration or data. Length de-

termined by CSR value.

Write a value to a WRAITH control and 5

status register.

Request to read a WRAITH control and 3

status register value.
Requests initiated by WRAITH

Scratchpad Memory Write-

back

Cacheline Read Request

CSR Write

CSR Read Request

Write full kernel output to off-chip host. |
Length configured by CSR value.

Request to read cacheline contents from 8
off-chip host memory/cache.

Cacheline Writeback Write back dirty cacheline contents mod- 6

ified by WRAITH.
Response types

Initiated by WRAITH. Contains value of 7

last requested CSR.

Initiated by off-chip host. Contains previ- 4
ously requested cacheline contents.

CSR Read Response

Cacheline Read Response

The flow between states is determined entirely by the
message type. In order to reduce logic depth around tristate

drivers, WRAITH currently exhibits a static priority for off-
chip requests; however, the logic described is fully functional
if code or message type is used to perform message selection.
The states required in order to handle these two message types
(that is, the state machine associated with WRAITH’s memory
bridge) is summarized in Figure

' No REQ

assertion

Haost-
driven

Bus-clearing
cycle. Send
addr.

Data-free
transfer
(request

Address on Address on

While data
remains in
counter

Fig. 7. WRAITH: Memory bus states

With regards to WRAITH-driven data, the on-chip logic
used to determine which requests/address/data to send (that
is, after the grant is obtained) is best discussed elsewhere.
However, we note here that the memory controller performs
arbitration between the different sources and types of on-chip
requests, such that WRAITH presents only one request during
any given “poll” cycle.

The protocol described above is ultimately used to provide
the interface pictured in Figure [8| to on-chip components,
which is the interface exposed to the on-chip caches, as well
as to the scratchpad memory controller.

B. WIMP

WRAITH’s mesh implements the WRAITH Interconnect
Mesh Protocol (WIMP). WIMP dictates packet format, con-
figuration/response format and routing control for the mesh
and its peripherals.

All packets in WRAITH are single-beat to maintain con-
sistency and simplify implementation details. A packet is
comprised of two fields:

1) A 4-bit Packet ID (or PID)
2) A 32-bit immediate value

All WRAITH PEs implement a register-immediate scheme
— that is to say, any operation is done purely by taking one
register and the mesh immediate as inputs to the FU. The FU
output is then used as the immediate for an output packet.

By looking at the PID, WRAITH is able to determine what
operation to perform and how to generate a response packet.
This is done by indexing into a PE Action Table (or PAT) with
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the PID. The format of a single PAT entry is shown in
with a graphical representation in figure [9]

TABLE II
WIMP PAT ENTRY FORMAT
Field Name Description Bitwidth
response_pid What PID to tag the output packet with 4
dest Which direction to send the packet to 3
src Index into the RF for input value 5
rd Index into the RF to write output 5
rf_we Write enable to register file port 1
imm_we Write the packet immediate directly to the RF 1
src_imm Interpret src as an immediate 1
fu_op Function select for instantiated FU 3

It should be noted that despite WRAITH only having 4 pos-
sible output directions, de st is made 3-bit to accommodate an
additional SINK direction. This allows some operations, like a
load-immediate from an RVTU or spacer packet, to terminate
with a side effect but no spurious output packet.

As routing logic is encoded by the PAT configuration but
writing the PAT configuration is determined by routed packets,
there is a bit of a catch-22 on initial reset to program the mesh.
To avoid this, a bypass routing mechanism is implemented
specifically for PIDs O and 1. Each PE in the mesh is assigned
a coordinate from 0 to 15. This bypass network expects packets
to be inputted at the top left node, passes a packet to the
right until in the correct column, then downwards until the
destination is reached.

PID 0 is always allocated for writing an entry into the PAT.
Its packet immediates are formatted as shown in Figure[9] and
will always spawn a response of PID 0.

Some kernels require hard-coded constants in the register
file to operate correctly. Thus PID 1 is allocated for a “constant
load” operation, and formats its packet immediates as shown in
Figure[9] These packets are also routed via the bypass network.

C. Processing Elements

There are a total of 16 Processing Elements within
WRAITH. 8 support standard ALU operations, while the other
8 support multiplication. Each 2 x 2 subcluster of PEs share
a 32-entry register file. Each PE can write to 8 entries in the
register file, but can read from all 32 entries. As seen in Figure
each PE is connected to up to 4 ingress FIFOs, and outputs

packets to egress FIFOs, all of which are 2-depth. The Ingress
Arbiter is a simple round robin arbiter to dequeue a packet
from one of the available ingress FIFOs.

This packet is then used to supply the 32-bit immediate
to the execute stage, and index into the Packet Action Table,
as described in Section The next stage of the processing
element utilizes the functional unit, whether it be an ALU or
multiplier. The output is then registered into the 3rd stage,
which is pushed into an egress FIFO.

If a FIFO is full, the PE will stall until it becomes available
to push through. It will not backfill or process other packets
which don’t depend on the full FIFO. It will however, support
forwarding over the register file if the PE is reading and writing
to the same entry.

The operations for the ALU are as follows, where a is the
packet immediate and b is the register value:

Option  Operation
0 a+b
1 a<<b
2 a>>>b
3 a—>b
4 a®b
5 b
6 al|b
7 a&b

TABLE IIT

PE ALU OPERATIONS

The ALU is given an identity mode to act as a pass-
through value for b. This is used for windowing operations in
some kernels (like convolution) in conjunction with the PAT’s
imm_we option. The multiplier supports standard RISC-V for-
mat, mul, mulh, mulsu, mulhu, as well as the identity
function. Two multiplier PEs are connected to the RVTUs, to
provide direct handling of the RISC-V multiplication instruc-
tions. Two PEs are connected to the input scratchpad bank,
and 2 PEs are connected to the output scratchpad bank.

D. RISC-V Cluster

WRAITH has a RISC-V cluster, depicted in figure
consisting of two RISC-V translation units (RVTUS).

These are for the most part standard RISC-V cores that
support the RV32IM ISA, and are built to fit a typical 5-
stage pipelining scheme with static branch pessimism and
forwarding to mitigate data hazards. To simplify logic design
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and verification efforts, a “global stall” approach is taken,
where the pipeline can only progress once all pipeline stalls
have been resolved. This includes cache access stalls, multi-
cycle execute operations and bubble insertion on consecutive
memory instructions.

Notably, RVTUs do not inherently contain the logic to
compute M-extension instructions — rather, they dispatch this
logic to other shared resources via the interfaces depicted in
figure [3

For divide support, the RISC-V cluster comes with a shared
6-stage sequential divider. Divider access is managed by a
round-robin arbiter, which provides a port to each pipeline.
This arbiter accepts divide operands and an operation select
from each pipeline’s execute stage, and broadcasts the comple-
tion status of the divider IP once the operation has completed.
To comply with global stall semantics, the arbiter is aware
of when the pipeline associated with an outstanding request
is stalling, and will maintain the result and valid signals on
its output until this stall is lowered. Furthermore, to ensure
correctness of operation, dependencies on outstanding load
instructions are monitored to guarantee that both inputs are
ready and broadcasted on forwarding paths (as applicable)
before initiating a request to the arbiter.

Multiplication is performed by co-opting MUL processing
elements in the mesh via a set of dedicated mesh ingress/egress

ports connected to the RVTU’s execute stage. To conform with
convention for ingress ports, the RVTU instantiates a 2-deep
FIFO to enqueue ingress packets into before consuming them.

For each multiplication instruction, an RVTU will generate
two packets to the mesh egress packet — one to transfer its
first operand into one of the MUL PE’s register slots, and
another to initiate the actual multiply instruction. This store
operation is typically implemented as a multiply-by-1, where
the 1 is a constant stored in the PE register file. This is done
to facilitate a register-register instruction within the mesh’s
register-immediate ISA. The MUL PEs response is sent to
the RVTU’s ingress FIFO, where it is then dequeued and
interpreted as an operation result once all other pipeline stalls
have resolved.

To simplify logic, RVTU requests simply WIMP packets
with no special properties — thus multiply support must
explicitly be configured in the mesh’s kernel programming.
During normal operation, this also means that if the RVTU is
expected to run a program that has multiplication instructions,
its reset pin should be asserted until programming completes.

To facilitate sharing of the RVTU cache, a cache arbiter
(CA) is attached to the fetch and memory stages of the
pipeline. Priority is statically given to the memory stage, and
it is assumed that there is always implicitly a request from the
fetch stage. As both stages must have their requests fulfilled
for the pipeline stall to go down, memory stage responses are
buffered in a register stage. This register stage is tagged with
a valid flag raised on cache response and lowered on the first
cycle the pipeline stall drops. While this valid flag is asserted,
the arbiter will ignore the request interface of the memory
stage.

Both cache arbiters are then fed into a second-stage round-
robin arbiter that manages access to the MMMU. This second-
level arbiter accepts and services CA requests at the cache line
granularity, but includes a burst adapter to convert CA requests
to the MMMU’s on-chip memory protocol.

E. Processing Mesh Bitstream

Mesh bitstreams are typically encoded as three distinct
sequences.



1) Configuration: The contents of each PE’s PATs, laid out
linearly and tagged with the PE and PAT index they are
associated with.

2) Constants: Any constants required by the program that
are larger than 5 bits. These are laid out the same way
as the configuration bitstream, albeit with a wider "line
index” (for the register file). Register indices must match
the register file bank allocation of the stated processing
element, as this bitstream facilitates a series of register-
write operations.

3) Data: The input data for the mesh to operate on. Can
be expressed as a sequence of 32-bit values, or as a se-
quence of 28-bit values tagged with a 4-bit PID specifier.
The interpretation is determined by the PID_SEL CSR.

As our system adheres to register-immediate operation, and
input data is delivered via the immediate lines on the mesh, we
are unable to provide constants greater than 5 bits intrinsically
as part of the configuration bitstream. Thus the constant
bitstream preloads register indices unused by the kernel with
any required values for access at runtime. In practice, the
constant bistream has been used to preload the mesh’s register
files with filter constants when performing 1-D convolution.

Each bitstream is sent over separate bus transactions. To
simplify SPM and bridge handling, PIDs O and 1 were
allocated for handling the configuration and constant bistream.
The appropriate PID is indicated via CSR settings.

Typical execution semantics dictate programming the mesh
with the configuration and constant bitstreams once, then
delivering an arbitrary number of data bitstreams for execution.
The mesh can be reprogrammed at any time (assuming no
outstanding data transaction). It should be noted that if the
chip is not being reset before programming, one must take
care to either not overwrite dedicated RVTU PAT and register
file entries in the new kernel, or assert the RVTU resets prior
to reprogramming. There is no explicit restriction in place to
enforce constant registers not being overwritten — if desired,
this must be done by the kernel expressed in the configuration
bitstream.

VI. TESTING INSTRUCTIONS

A. Generating Mesh Bitstream

At the moment, all kernels must be hand-written — due to
the novel nature of our mesh and the additional constraints
imposed by RVTU configuration, there is no pre-existing
compiler framework compatible with our chip. While a num-
ber of dummy kernels were flashed onto the mesh to test
functionality, at the moment we do all full-system functional
testing with a Conv3 kernel (convolution of some input data
stream with a 3-wide filter). This is done with integers at
the moment, but floating-point constants can be supported via
software in the future.

To generate the bitstreams for Conv3, run
cartographer/conv3_mapper.py. This will dump
a data bitstream into out.dat, a constant bitstream
into out.const, and a configuration bitstream into

out.cfg. A ”golden output” will also be printed to
the terminal to verify runtime output against. A pre-
generated set of Conv3 kernel bitstreams is available in
chip/hvl/top-verif/mem_files.

B. RVTU Simulation

The RVTUs are tested via several unit testbenches, the
most relevant being rvtu_cluster_sim. This testbench
instantiates the full RISC-V cluster, instantiates two auto-
configured MUL PEs, and has a memory model that emulates
the timing of the MMMMU arbiter.

To run this testbench, go to chip/sim and run make
run_vcs_cluster_sim. This target takes PROGO and
PROG1 arguments that configure which program to run on
each core. This can be a C/C++, assembly or compiled
program. A small assortment of provided testcases is avail-
able in chip/sim/testcode, with the Makefile defaulted
to run Coremark on Core 0 and needle.cpp (Rodinia’s
Needleman-Wunsch benchmark) on Core 1.

Do note that while using pre-compiled programs is sup-
ported, the linker script uses different static-mapped memory
regions for each core to make a unified memory model more
feasible. Using pre-compiled memory images for a core they
it is not intended is very likely to quickly incur runtime errors.

Each core is harnessed with an RVFI monitor for run-
time correctness-checking, but will also dump commit logs
to chip/sim/vcs/{core0.log, corel.log}. These
can be diffed against Spike by running make spike_im
PROG=<PROGRAM> to generate a golden log. The ELFs
required to do so are dumped in chip/sim/memgen when
running the main simulation target. The ELF’s name will be
appended with the core number it was compiled for, and you
will likely run into Spike mismatches if using the wrong ELF
file.

C. Behavioral Full-System Verification

Note: For brevity, all paths listed in this section are relative
to the /chip subdirectory.

After navigating to the sim directory, run make
vcs/top_tb and make run_vcs_top_tb. Running so
converts 2 RVTU programs in the $PROG[0,1] paths to
memory maps. Do note that these paths are set by default
in the Makefile.

The testbench also ingests the files in
chip/hvl/top-verif/mem_files/ directory, namely
[cfg,cnst,data]_mem.hex. These files represent the
bitstreams for the configuration, constant and data streams
for the Mesh.

This simulation also consumes the files in the memgen
folder, which contains a memory map for the RVTU memory
space (generated by compiling the program files mentioned
earlier).

Lastly, the outputs of the behavioral sim can be observed in
vcs/simulation. log. Additionally, the output memory
maps (SPM WB data stream, final RVTU memory map) can



be found in vcs/spm_wb.dmp and rvtu_wb.mem in the
hvl/top-verif/mem_files/ directory.

The SPM Writeback can be diffed against a golden output
in the hv1 directory. Similarly, the RVTU memory transaction
logs can be diffed against logs in the groupdir (namely,
/groups/eced427-group0/rvtu_memlogs/).

D. Post-PNR Full-System Verification

After navigating to the chip/sim directory,
run make vcs/post_pnr_tb and make
run_vcs_post_pnr_tb

After navigating to the chip/sim directory, run make
vcs/top_tb and make run_vcs_top_tb.

This testbench uses the same variables/paths as the Behav-
ioral FSV testbench, with an additional path to the SDF file
used for back annotation. This SDF file is expect to be in the
synth/pnrout/ directory with the name top.pnr.sdf.
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