
Introduction to Image Processing

1 Image Representation

1.1 Continuous-domain, discrete-domain, and finite-size images

An image is a spatially varying signal s(x, y) where x and y are two spatial coordinates. The
signal value s(x, y) at each spatial location (x, y) can be either a scalar (e.g. light intensity for
gray scale images) or a vector (e.g. 3 dimensional vector for RGB color images, or more general
P -dimensional vector for multispectral images). In the latter case, we could treat each vector
component separately as a scalar image (referred to as a channel).

In digital image processing, images are discretized into samples at discrete spatial locations that
are indexed by integer coordinates [m,n]. Typically, a discrete-domain image s[m,n] is related to
a continuous-domain image s(x, y) through the sampling operation

s[m,n] = s(m∆x, n∆y), (1)

where ∆x and ∆y are sampling intervals in x and y dimensions, respectively. More general, a
discrete-space image is obtained through the generalized-sampling operation

w[m,n] =

∫ ∞
−∞

∫ ∞
−∞

s(x, y)φm,n(x, y)dxdy, (2)

where φm,n(x, y) is the point-spread function of the image sensor (e.g. a photometric sensor in a
digital camera) at the location indexed by (m,n). Typically, point-spread functions at different
locations are simply shifted versions of a single function as

φm,n(x, y) = φ(x−m∆x, y − n∆y), (3)

and φm,n(x, y) is called the sampling kernel.

Furthermore, a discrete image s[m,n] is often of finite size; for example 0 ≤ m ≤ M − 1, 0 ≤
n ≤ N − 1. Then s[m,n] can also be treated as an M ×N matrix. The image sample s[m,n] and
the corresponding location [m,n] is often called a pixel, or picture element.

1.2 Fourier transforms and sampling theorem

It is often very effective, conceptually and computationally, to represent images in the frequency
domain using the Fourier transform. For a continuous-domain image s(x, y), its Fourier transform
is defined as

S(u, v) =

∫ ∞
−∞

∫ ∞
−∞

s(x, y)e−j2π(xu+yv)dxdy. (4)
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Here, u and v denote frequency variables and they have reciprocal unit with x and y. For
example, if the spatial coordinate x has unit in mm, then the corresponding frequency variable u
has unit in mm−1. Under certain conditions, the image s(x, y) can be exactly recovered from its
frequency-domain S(u, v) by the inverse Fourier transform

s(x, y) =

∫ ∞
−∞

∫ ∞
−∞

S(u, v)ej2π(xu+yv)dudv. (5)

We denote this pair of signals related by the Fourier transform (FT) as

s(x, y)
FT←→ S(u, v). (6)

For a discrete image s[m,n] the discrete-space Fourier transform (DSFT) relation

s[m,n]
DSFT←→ S(u, v). (7)

is defined as

Sd(u, v) =

∞∑
m=−∞

∞∑
n=−∞

s[m,n]e−j2π(mu+nv), (8)

s[m,n] =

∫ 1/2

−1/2

∫ 1/2

−1/2
Sd(u, v)ej2π(mu+nv)dudv. (9)

It is easy to see that Sd(u, v) is a periodic function

Sd(u+ k, v + l) = Sd(u, v), for all k, l ∈ Z,

and thus we only need to consider the function in one period; e.g. Sd(u, v) with |u| ≤ 1/2, |v| ≤ 1/2.

Theorem 1 (Sampling). Suppose that the discrete-domain image s[m,n] is related to the continuous-
domain image s(x, y) through the sampling operation (1). Then their Fourier transforms are related
by

Sd(u, v) =
1

∆x∆y

∑
k∈Z

∑
l∈Z

S

(
u+ k

∆x
,
v + l

∆y

)
. (10)

Proof. (Sketch) One way to prove this is to express s[m,n] using (5) by substituting x = m∆x, y =
n∆y and then “match” with the right-hand side of (9).

The summation on the right-hand side of (10) consists of S(u/∆x, v/∆y) and its translated
copies in frequency by (k, l). These copies with (k, l) 6= (0, 0) are called alias terms. If s(x, y) is
bandlimited such that

S(u, v) = 0, for |u| ≥ 1/(2∆x), |v| ≥ 1/(2∆v), (11)

then these alias terms do not overlap with S(u/∆x, v/∆y), and thus S(u, v) can be exactly recovered
from Sd(u, v) simply by

S(u, v) = ∆x∆y rect(∆xu) rect(∆yv) Sd(∆xu,∆yv). (12)
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Here the rectangular function is defined as

rect(x) =

{
1 if |x| ≤ 1/2

0 else.

We can show that (12) in the spatial domain is equivalent to the following interpolation formula
in the spatial domain:

s(x, y) =
∑
k∈Z

∑
l∈Z

s[m,n] sinc(t/∆x −m) sinc(t/∆y − n), (13)

where the sinc function is defined as

sinc(x) =
sin(πx)

πx
.

For the discrete image s[m,n] of finite size M ×N with 0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1, we
have the discrete Fourier transform (DFT) relation

s[m,n]
DFT←→ S[k, l], (14)

which is defined as

S[k, l] =

M−1∑
m=0

N−1∑
n=0

s[m,n]e−j2π(mk/M+nl/N), (15)

s[m,n] =
1

MN

M−1∑
k=0

N−1∑
l=0

S[k, l]ej2π(mk/M+nl/N). (16)

Therefore the DFT maps an M ×N image in the spatial domain into an M ×N image in the
frequency domain; both images can have complex values.

Relating (15) to (8), we see that if the M ×N image s[m,n] is zero padded outside its support
[0,M − 1]× [0, N − 1] then S[k, l] is a sampled image of Sd(u, v),

S[k, l] = Sd(k/M, l/N). (17)

In summary, we have seen the following three Fourier transforms

continuous-domain
FT←→ continuous-domain

discrete-domain
DSFT←→ continuous-domain

discrete-domain
DFT←→ discrete-domain

Among these transforms, only the last one, the DFT, is computationally feasible (i.e. with
summations of finite terms). Moreover, the DFT can be implemented efficiently with fast Fourier
transform algorithms. In moving from the FT to the DSFT and then to the DFT, we first discretize
the spatial domain and then the frequency domain. Therefore, it is important to understand (12)
and (17) so that we can relate the computational results and images by the DFT to the frequency
representation of the original image in the real world.
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2 Image Filtering

2.1 Convolution operations

The image (linear) filtering operation in the continuous-domain is defined by convolution

r(x, y) = (s ∗ h)(x, y) =

∫ ∞
−∞

∫ ∞
−∞

h(x′, y′) s(x− x′, y − y′)dx′dy′. (18)

And similarly in the discrete-domain:

r[m,n] = (s ∗ h)[m,n] =
∞∑

m′=−∞

∞∑
n′=−∞

h[m′, n′] s[m−m′, n− n′]. (19)

The two-dimensional signal h(x, y) or h[m,n] is called filter, mask, or point-spread function.

2.2 Examples

Example 1 (First-order derivatives). The first-order derivatives in the x and y directions of a
discrete image s[m,n] can be approximated by finite differences

∂s

∂x
= s[m+ 1, n]− s[m,n] = (s ∗ hx)[m,n] (20)

∂s

∂y
= s[m,n+ 1]− s[m,n] = (s ∗ hy)[m,n], (21)

which are convolutions with the following filters

h(1)x =

(
1

−1

)
, h(1)y =

(
1 −1

)
.

Here in the matrix form, row and column indexes correspond to x (first) and y (second) dimen-
sions, respectively; and the sample in the box corresponds to the original (i.e. (m,n) = (0, 0)).

Example 2 (Gausian smoothing filter). The two-dimensional Gaussian filter, which is often used
for image smoothing, is defined as

h
(2D)
Gauss(x, y) =

1

2πσ2
e−

x2+y2

2σ2 . (22)

The 2D Gaussian filter is separable, which means it is a product of 1D filters in each dimension

h
(2D)
Gauss(x, y) = h

(1D)
Gauss(x) h

(1D)
Gauss(y), where h

(1D)
Gauss(x) =

1√
2πσ

e−
x2

2σ2 .

Discrete-domain Gaussian filters used in practice are sampled and truncated versions of the
above continuous-domain filters.
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Example 3 (Edge detector). The Sobel edge detector is obtained by smoothing the image in the per-
pendicular direction before computing the directional derivatives. The associate Sobel edge detector
filters are given by

h(Sobel)x =

 1 2 1

0 0 0
−1 −2 −1

 , h(Sobel)y =

1 0 −1

2 0 −2
1 0 −1

 .

Edges are detected as pixels [m,n] where the magnitude of the gradient is above a certain thresh-
old T ; i.e.

|(s ∗ h(Sobel)x )[m,n]|+ |(s ∗ h(Sobel)y )[m,n]| ≥ T.

2.3 Frequency response of a filter

A key result in signal and image processing is that convolution in the space domain becomes
multiplication in the frequency domain

r(x, y) = (s ∗ h)(x, y)
FT←→ R(u, v) = S(u, v) H(u, v), (23)

r[m,n] = (s ∗ h)[m,n]
DSFT←→ Rd(u, v) = Sd(u, v) Hd(u, v). (24)

Therefore, the Fourier transform H(u, v) of the filter, called frequency response, indicates how
certain frequency components of the input image s(x, y) are amplified or attenuated in the resulting
filtered image r(x, y).

However, multiplication in the DFT domain corresponds to circular convolution in the space
domain

r[m,n] = (s~M,N h)[m,n]
DFT←→ R[k, l] = S[k, l] H[k, l]. (25)

The circular convolution operation for images of size M ×N is defined as

(s~M,N h)[m,n] =

M−1∑
m′=0

N−1∑
n′=0

h[m′, n′] s[〈m−m′〉M , 〈n− n′〉N ], (26)

where 〈n〉N denotes modulo N of n.
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