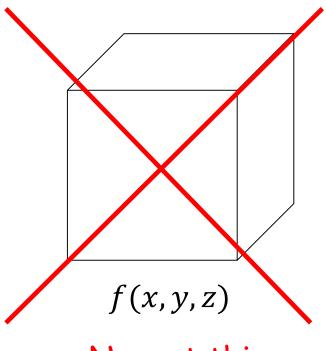
ECE 420
Lecture 6
October 7 2019

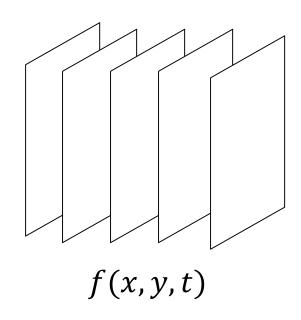
Now Entering

The Third Dimension!

3D Signal Processing



No, not this one!



This one!

Video Processing

- Not volumetric 3D signal processing, but processing of video streams
 - Set of 2D image frames
- Typical algorithms operate on a frame-by-frame basis with some state carried among frames
- Many video processing algorithms (some of these apply to still images as well):
 - Detection / recognition
 - Tracking
 - Compression
 - 3D reconstruction

Algorithm Performance

- Based on processing time per frame, we can express the performance of the algorithm in terms of frames per second
 - Very common metric in computer gaming / display systems
- Human visual system can perceive up to 1000 fps under certain circumstances
 - 13 20 fps: video motion becomes fairly fluid
 - 24 fps: broadcast TV / motion picture standard
 - 30 60 fps: gaming
 - 120+ fps: TV [with interpolation]

Algorithm Performance

- Insufficient FPS?
 - Live with it
 - Drop frames
 - Drop pixels
 - Drop frames and/or pixels and interpolate result
- Decreasing frame rate or resolution can potentially make things harder due to
 - lower temporal correlation
 - lower resolution
- Target FPS can put a significant limit on how much computation your algorithm can perform on each frame

2D DFT

$$X[k,\ell] = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} x[m,n] e^{-j2\pi(km/M + \ell n/N)}$$

Direct implementation: $O(N^4)$ [ouch!]

$$X[k,\ell] = \sum_{m=0}^{M-1} e^{-\frac{j2\pi km}{M}} \sum_{n=0}^{N-1} x[m,n] e^{-\frac{j2\pi \ell n}{N}}$$

Separable implementation: $O(N^3)$ [better!]

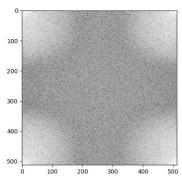
Replace direct sums with FFT

$$y[m, \ell] = F_n\{x[m, n]\}$$
$$X[k, \ell] = F_m\{y[m, \ell]\}$$

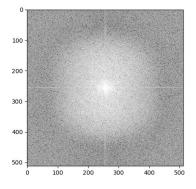
2D FFT: $O(N^2 \log N)$ [best!]

2D DFT

- 2D DFT samples span $[0, 2\pi)$ in each dimension
 - Samples are conjugate-symmetric about the origin
 - fftshift() moves the DC component to the image center for easier visualization
- Also images tend to have a VERY strong DC component, so some manipulation of magnitude values is necessary for visualization
 - log, sqrt, etc.
 - If your DFT looks empty, check the DC pixel!



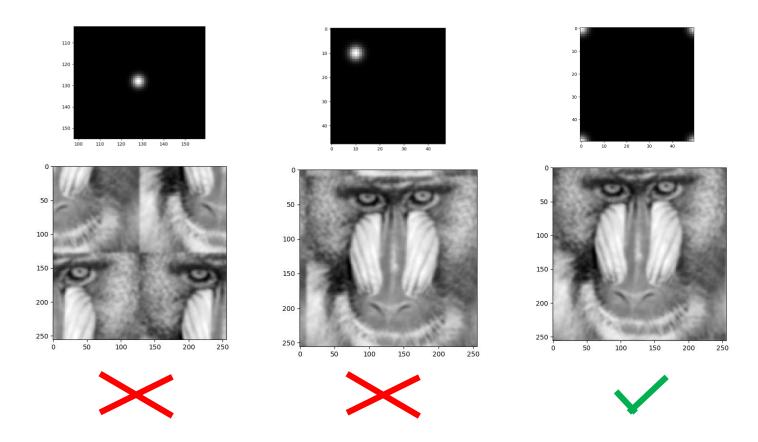
Magnitude 2D DFT



2D DFT after fftshift

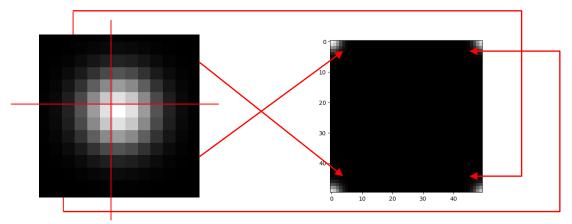
2D Convolution with DFT

- Multidimensional extension of the convolution theorem
 - $y[m,n] = x[m,n] **h[m,n] = F_2^{-1} \{F_2\{x\}F_2\{h\}\}\$
- When using the 2D DFT, we get 2D circular convolution



2D Convolution with DFT

- We want to apply a (mostly) zero phase filter h[m, n]
- The 'center' of h needs to be at the [0,0] location
- Other patches of h wrap around
 - h is non-causal, which results in circular wrapping



- Zero padding the image prior to DFT yields linear convolution
 - Still need to rearrange h as above, or accommodate pixel shift
- Can also leverage ifftshift() to restructure h appropriately

Brief Review of Matrix Operations

- An m by n matrix has m rows and n columns
- Elements indexed as a_{ij} for element in $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$
- Input data (samples, state, etc.) represented as a column vector (m by 1 matrix)
- Higher dimensional input data (e.g. images)
 'stacked' to form a 1D vector

A matrix variable is usually written in bold, using lowercase (x)
 for a column matrix and uppercase for a 'full' matrix operator (A)

Brief Review of Matrix Operations

Addition/subtraction is element wise application of operation

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \\ a_{31} + b_{31} & a_{32} + b_{32} \end{bmatrix}$$

 Multiplication is inner products between rows and columns of respective matrices

C = AB, $c_{ij} = \sum_{k} a_{ik} b_{kj}$

Matrix transpose flips elements about the diagonal

$$A^T = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \end{bmatrix}$$

• Instead of 'division' we talk about matrix inverse A^{-1}

$$A^{-1}A = I$$

Detection vs. Tracking

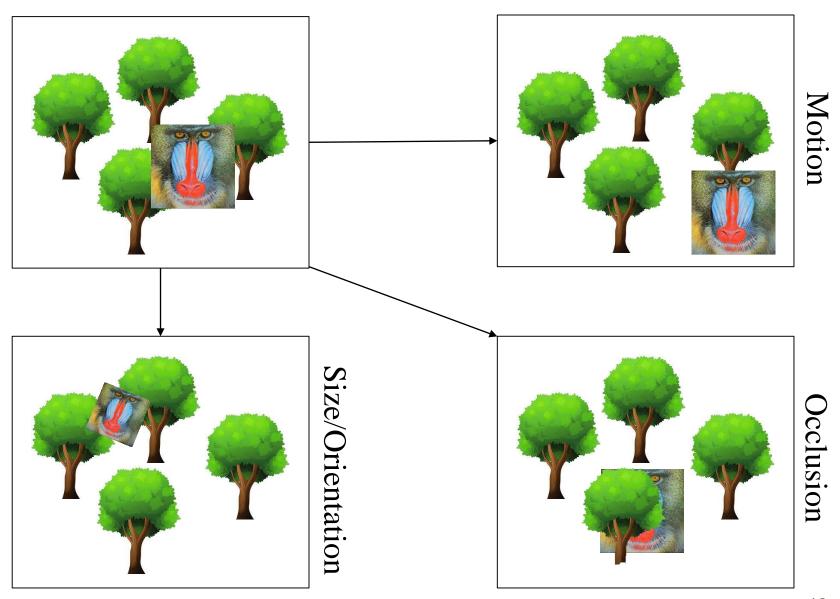
Detection

- Usually posed as a single-frame / image problem
- Is there a particular object present?
 - Where is it?
 - What is it?

Tracking

- Given a starting location/description (seed)
- Follow object as it traverses scene
- May also want to estimate/report changes in "pose"
 - How is it oriented / configured?
- Tracking will typically involve some detection

Challenges in Tracking

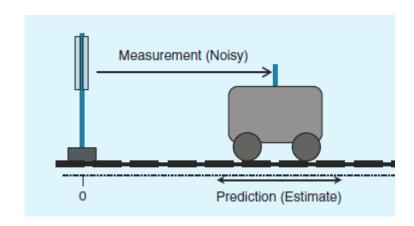


Kalman Filter

- General problem statement:
 - Given a model of the system state evolution, estimate progression of system state over time, given system measurements
- State update equation
 - $x_t = F_t x_{t-1} + B_t u_t + w_t$
 - x_t system state vector
 - F_t state transition matrix
 - u_t system control vector
 - B_t control input matrix
 - w_t process noise (with covariance Q_t)

Kalman Filter

- State measurement
 - $z_t = H_t x_t + v_t$
 - z_t measured data
 - H_t measurement matrix



- v_t measurement noise (covariance R_t)
- Kalman filter algorithm has two parts
 - Prediction step
 - Measurement update step
- For notational simplicity, let $H_t = I$

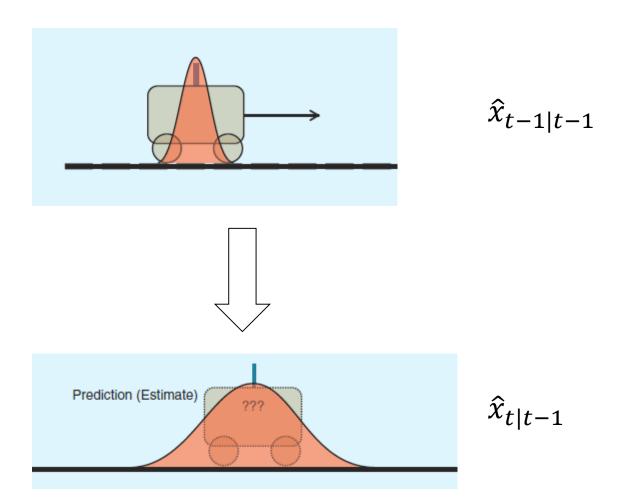
Kalman Filter - Prediction

Given past state estimate, calculate new state estimate

•
$$\hat{x}_{t|t-1} = F_t \hat{x}_{t-1|t-1} + B_t u_t$$

- Notation $\hat{x}_{a|b}$
 - Estimate of x at time t = a given measurements up to time t = b
- This update propagates the estimated state forward
- Key to the Kalman filter is keeping track of the certainty of our estimates
 - $P_{t|t-1} = Var[x_t \hat{x}_{t|t-1}] = F_t P_{t-1|t-1} F_t^T + Q_t$
- Note that at this point we have updated the state without any feedback from the system

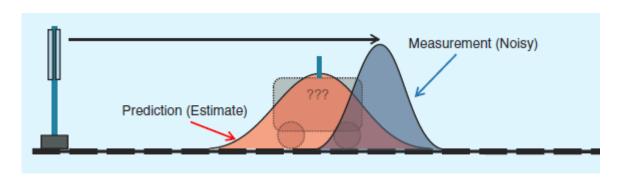
Kalman Filter - Prediction

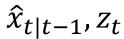


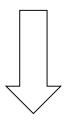
Kalman Filter - Measurement update

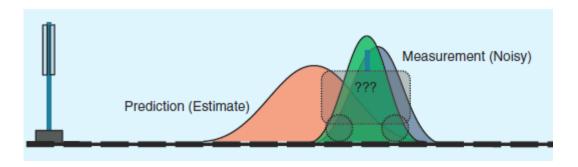
- Given noisy measurements, update the state estimation
 - $\hat{x}_{t|t} = \hat{x}_{t|t-1} + K_t(z_t \hat{x}_{t|t-1})$
 - $K_t = P_{t|t-1} (P_{t|t-1} + R_t)^{-1}$
- Note that at no point in time do we assume a perfect state value
 - Every vector has an associated uncertainty with it
- Updated certainty of estimate
 - $P_{t|t} = Var[x_t \hat{x}_{t|t}] = P_{t|t-1} K_t P_{t|t-1}$
- How did these updates come about?

Kalman Filter - Measurement Update









 $\hat{x}_{t|t}$

Fusing Measurements

- Consider two noisy measurements x_1, x_2 with different variances σ_1^2, σ_2^2
 - How should these be 'optimally' combined?
- Consider a linear combination of the two measurements that minimizes the variance of the combined estimate

•
$$\hat{x}_{opt} = \min_{\alpha} Var[(1-\alpha)x_1 + \alpha x_2]$$

This is achieved by 'Kalman Gain' K

•
$$\alpha = K = \sigma_1^2/(\sigma_1^2 + \sigma_2^2)$$

Yielding

•
$$\hat{x}_{opt} = x_1 + K(x_2 - x_1)$$

•
$$Var[\hat{x}_{opt}] = (1 - K)\sigma_1^2$$

Fusing Measurements - Kalman Filter

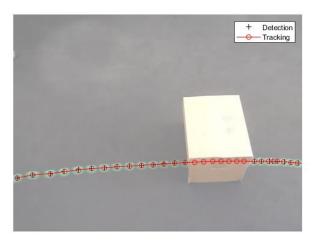
- In the Kalman Filter derivation, we want to estimate $\hat{x}_{t|t}$ given
 - $\hat{x}_{t|t-1}$, which has variance $P_{t|t-1}$
 - z_t, which has variance R_t
- Applying the 'optimal' fusion of these two measurements from the scalar case

Variable	Scalar Fusion	Kalman/Vector Fusion
K	$\sigma_1^2/(\sigma_1^2+\sigma_2^2)$	$P_{t t-1}(P_{t t-1} + R_t)^{-1}$
$\hat{x}_{t t}$	$x_1 + K(x_2 - x_1)$	$\hat{x}_{t t-1} + K_t(z_t - \hat{x}_{t t-1})$
$P_{t t}$	$(1-K)\sigma_1^2$	$(I - K_t) P_{t t-1}$

The attractive feature of Kalman filtering is its simple, recursive form

Example of Kalman Video Tracking

- Consider tracking a ball
- Provided an initial location
- Estimate new ball location
- Check for ball near new location, update based on discrepancy
- If no ball detected, continue propagating state without measurement reinforcement



Correlation Filter Tracking

- Not correlation of image patches with each other but rather correlation with a classifier filter
- In a training phase a target image/patch is provided which is used to construct the classifier filter
 - The filter is designed so that its response to the training image is similar to a predefined regression target image (e.g a Gaussian)
- In the tracking phase applies the classifier filter to patches in the image
 - Large responses = high correlation = the object we are looking for!

Correlation Filter Tracking

- Selecting which sections of the image to test can be tricky
 - Correlation evaluation can be costly per patch
 - Insufficient patch coverage leads to loss of tracking performance
- Test all the patches using the DFT / convolution
 - Apply a window to attenuate circular wrapping effects
- Look for maximum response and update classifier filter
- FFT implementation allows for very efficient tracking algorithm

	Storage	Bottleneck	Speed
Random Sampling (p random subwindows)	Features from p subwindows	Learning algorithm (Struct. SVM [4], Boost [3,6])	10 - 25 FPS
Dense Sampling (all subwindows, proposed method)	Features from one image	Fast Fourier Transform	320 FPS

OpenCV

- Open Source Computer Vision Library
- Implements main different computer vision algorithms with focus on real-time applications
 - Can leverage multiple cores, hardware accelerators
- Among other areas has support for facial and gesture recognition, object identification, segmentation, motion tracking, machine learning, image filtering and transforms, drawing
- C++, Python and Java Interfaces
- Active community with continual contributions
- Goal is not to reinvent the wheel

Lab 7

- Video Processing
- Utilize KCF to track an object of interest
 - Identified at start of algorithm's execution by user
- Leverages OpenCV to do the heavy lifting

Assigned Project Lab Proposals

- Due October 13
- Expectations for proposal:
 - Overview of the algorithm to be implemented, including citation of sources.
 - Plan for testing and validation of the algorithm's implementation.
 - Rough idea(s) for Final Project applications of the algorithm.
- Feedback will be provided prior to starting on Assigned Project Lab

Outline of Rest of Semester

- 10/27: Final Project Proposals Due
- Week of 10/28: Final Project Proposal Presentation + Assigned Lab Demo
- Week of 12/2: Final Project Demo
- 12/9: In-class Final Lecture Cumulative Quiz
- 12/13: Final Project Report and optional Video Due

This week

- Lab 6: Image Processor Quiz/Demo
- Lab 7: Video Tracker
- Assigned Project Lab Proposals