
ECE 420

Lecture 10

November 4 2019

Exploiting Parallelism for Acceleration

• For signal processing applications, it’s all about the math

• How many multiplies, adds, etc. are performed

• Sometimes performance can be memory-limited, but often SP

algorithms are compute-bound

• Performance becomes correlated with compute rate of your

system (FLOPs)

• Diminishing returns in absolute time for performing these

operations (e.g. CPU frequencies)

• Computer architecture trends favor exploiting parallelism

1

Architectural Features for Parallelism

• Superscalar – multiple functional units (multipliers, adders)

• Pipelined – don’t wait until operation is complete before issuing

the next one

• Out of order execution – allow operations to proceed out of order

if dependencies allow

• SIMD (vector instructions) – operate a single operation on a

group of data

• Multithreading – separate concurrently executing code paths

• Multiprocessing – multiple processors, on same host or a cluster

of hosts

2

Exploiting Parallel Features

• Earlier efforts focused on compiler and hardware runtime to

detect and exploit parallelism

• Instruction scheduling, out of order execution

• Limitations to how much can be gleaned through analysis

3

𝑥 = 𝑎 𝑛 ∗ 𝑏

𝑦 = 𝑎 𝑛 + 1 ∗ 𝑥

𝑧 = 𝑐 𝑚 + 𝑑

𝑎 𝑚 = 0

What are ‘legal’ reorderings

of this code

(preserving original

semantics)?

Exploiting Parallel Features

• Progressive movement to shifting responsibility to developers

• Add ‘hints’ to code

• Explicit threading/parallel constructs

• New tools, languages, and language enhancements improve

code correctness and ease of development

• Moves some responsibility back to the language, compiler and

runtime

• A runtime/architecture will provide a particular execution model –

it is up to you to determine how (or if) your algorithms map to it

4

Massively Parallel Processing

• In desktop land, processing improvements were largely

incremental

• e.g. two processor system, 4 cores, 4x32 bit vectors

• What can you do if you need to tackle a REALLY large problem?

• Acceleration of 100x or more

• Massively parallel system (likely a cluster)

• GPU technology has evolved into a massively parallel general

purpose computing platform, right on your computer!

• Disclaimer: it is not your typical architecture!

5

Historical GPU architecture

6

Host

Vertex

Transform/Lighting

Triangle Setup

Raster

Shader

Raster OPs

Frame Buffer

GP-GPU

• GPUs deliver a lot of computational horsepower, have been

increasing rapidly over the years

• As graphics pipelines evolved, the vertex and shader stages

became programmable units

• Each contained their own instruction set

• Shader programs had lots of options, including different shading

and lighting modules, texture mapping, and reflections

7

GP-GPU

• People noticed they could ‘hijack’ shader programs to do non-

graphics things

• Data input via texture buffers or other memory sources

• Frame buffer contained output pixels

• An exciting POC but significant limitations

• GPU wasn’t really intended to be used this way, awkward to set up

• Instruction set not as robust as CPU operations

• Limitations in communication among shaders

• Datatype constraints

• Limited tool support

8

CUDA Architecture

• “Compute Unified Device Architecture”

• No more discrete vertex processors and shaders

• Massive array of processing elements

• General purpose programming model

• SPMD (single program, multiple data) paradigm

• Facilitate execution of more arbitrary computational tasks with a

variety of datatypes

• Expanded instruction set for computation

• Official tools for developing, debugging

• Applications

• Image processing, physical modeling, machine learning, matrix

algebra, convolution, correlation, sorting

9

CUDA Architecture

10

Streaming Multiprocessors

• Streaming Multiprocessor (SMP) contains

• Streaming Processors (SP)

• Super (special) Function Units (SFU)

• Texture Unit

• Shared memory, register memory

• L1 caches for instruction, data

• Streaming processors are ‘simple’

processing elements

• No vector operations, no OOO execution

• Executes a thread from the larger task pool

• Relies on switching among threads to

cover latency of computation and memory

operations

11

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

Register Memory

Texture Unit

CUDA Threading Organization

• A kernel denotes a program to

be executed on the GPU device

• All threads are executing the

same kernel (SPMD)

• Threads are organized into

groups called Blocks

• The overall problem is partitioned

into blocks (denoted a Grid)

• Every thread is provided ID info

threadIdx and blockIdx along with

blockDim and gridDim

12

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Simple Example

• Consider a simple operation where we want to scale every pixel

by a certain factor

• Conventional CPU code

• GPU Kernel code

13

void scale(float* img, int N, int M, float scaling) {

for (int y = 0; y < M; y++) {

for (int x = 0; x < N; x++) {

img[x + N * y] *= scaling;

}

}

}

void scale(float* img, int N, float scaling) {

xindex = threadIdx.x + blockIdx.x * blockDim.x

yindex = threadIdx.y + blockIdx.y * blockDim.y

img[xindex + N * yindex] *= scaling;

}

Thread Scheduling

• Each Thread Block is divided into Warps

• Warps are a group of threads that execute concurrently on an

SMP

• Warps are scheduling units in SMP

• The SMP has zero-overhead warp scheduling

• Warps whose next instruction has its operands ready for

consumption are eligible for execution

• Eligible warps are selected for execution on a prioritized scheduling

policy

• All threads in a Warp execute the same instruction when selected

14

Threading and Block Scheduling

• Threads are an extremely light weight construct in CUDA

• For full utilization, 1000s of threads will be required

• Each thread requires some resources (registers, shared memory)

• The resource requirements of a block is the aggregate

requirements of all threads in the block

• Blocks are scheduled to run on the SMPs

• No particular order or organization guarantees

• Number of blocks assigned to each SMP depends on block

resources vs. SMP resources

• A key design decision is that threads within a block can

cooperate but threads from different blocks cannot

15

Memory Hierarchy

• Registers

• Private per thread

• Stores intermediate values in computation

• Compiler-determined

• Shared Memory

• Shared by threads of the same block

• Inter-thread communication

• Global Memory

• Shared by all blocks, all threads

• Inter-block* and inter-grid communication

16

Concurrency and Communication

• Threads within a block logically execute concurrently but only

threads within a given warp physically execute concurrently

• Ordering of execution among warps is not guaranteed

• Communication among all threads (within or between warps) is

possible via Shared Memory

• Shared memory is low-latency memory within an SMP

• Required shared memory declared as part of block properties

• Shared memory is visible to all threads in a block but not with other

blocks

• Communication via write/read operations to shared memory

• Synchronization primitive __syncthreads() provides a barrier

among all warps to enforce correctness

17

Branch divergence

• All threads within a warp

execute the same instruction

at the same time

• Threads can conditionally

execute code based on

thread index or other input

• This is managed in the hardware by executing both paths and

using predicates

• If the predicate (conditional) for an instruction is false, the

instruction becomes a no-op

• Incurs runtime overhead of executing both branch paths (branch

divergence)

• If all threads within a warp branch the same way, this is avoided

18

void kernel_func() {

if (threadIdx.x % 2) {

// do something on odd pixels

} else {

// do something on even pixels

}

}

Memory Bank Conflicts

• In a parallel machine, many threads access memory at the

same time

• In order to achieve high memory bandwidth, memory is divided

into banks

• Each bank can service one address per cycle

• Total memory subsystem can service as many simultaneous

accesses as it has banks

• There are as many banks and SPs, however access patterns

are not restricted

• Multiple simultaneous accesses to a bank result in a bank conflict

and are serialized

19

Memory Bank Conflicts

20

• No Bank Conflicts • No Bank Conflicts

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Memory Bank Conflicts

21

• Bank Conflicts • Note: Bank conflicts only

occur if accessing

different memory

addresses that map to the

same bank. Reading

from the same address is

OK.

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Memory Coalescing

• Access to global memory is via a very wide bus

• Reading or writing to a particular address involves accessing the

full block of data at that address

• In order to make memory access efficient, threads should

access contiguous pieces of data, so that individual requests by

different threads coalesce into a single memory operation

• Without coalescing, global memory accesses are serialized,

inducing extra latency and wasting the memory bus bandwidth

22

Texture Unit

• Present in each SMP

• Accesses read-only texture

memory from dedicated cache

• Includes hardware for performing

linear interpolation among samples

• Automatically handles boundary effects

• Has some associated latency, but allows for off-loading some

computation / memory effort

23

0 1 2 3

0

1

2

4

(2.5, 0.5)

(1.0, 1.0)

Efficient GPU Programming

• Key features of highly efficient GPU algorithms

• Massively parallel

• Little to no branch divergence

• Low memory requirements

• High occupancy (number of warps scheduled for an SMP)

• SMP resources divided by resource requirements per block

(registers, shared memory)

• Other tweaks

• Memory optimizations (preload into shared memory, bank conflict

elimination, global memory coalescing)

• Control flow to reduce branch divergence

• Leverage texture unit

24

OpenCL / GPU on Android

• It is possible to develop CUDA programs natively for nVidia

based chipsets

• OpenCL is a standardized abstraction for high performance

computing platforms and encompasses CPUs, GPUs, and other

hardware accelerators

• Using OpenCL can provide most cross-platform support among

Android devices

• OpenCL is supported as part of the Android SDK and is

recommended

• Some library routines in OpenCV can also take advantage of

GPU resources for acceleration

25

This Week

• Revised Final Project Proposals (with ‘final’ Assigned

Lab results) due this week

• Final project work

• Milestone 1 demo next week

26

