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Exploiting Parallelism for Acceleration

• For signal processing applications, it’s all about the math

• How many multiplies, adds, etc. are performed

• Sometimes performance can be memory-limited, but often SP 

algorithms are compute-bound

• Performance becomes correlated with compute rate of your 

system (FLOPs) 

• Diminishing returns in absolute time for performing these 

operations (e.g. CPU frequencies)

• Computer architecture trends favor exploiting parallelism
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Architectural Features for Parallelism

• Superscalar – multiple functional units (multipliers, adders)

• Pipelined – don’t wait until operation is complete before issuing 

the next one

• Out of order execution – allow operations to proceed out of order 

if dependencies allow

• SIMD (vector instructions) – operate a single operation on a 

group of data

• Multithreading – separate concurrently executing code paths

• Multiprocessing – multiple processors, on same host or a cluster 

of hosts
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Exploiting Parallel Features

• Earlier efforts focused on compiler and hardware runtime to 

detect and exploit parallelism

• Instruction scheduling, out of order execution

• Limitations to how much can be gleaned through analysis
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𝑥 = 𝑎 𝑛 ∗ 𝑏

𝑦 = 𝑎 𝑛 + 1 ∗ 𝑥

𝑧 = 𝑐 𝑚 + 𝑑

𝑎 𝑚 = 0

What are ‘legal’ reorderings

of this code 

(preserving original 

semantics)?



Exploiting Parallel Features

• Progressive movement to shifting responsibility to developers

• Add ‘hints’ to code

• Explicit threading/parallel constructs

• New tools, languages, and language enhancements improve 

code correctness and ease of development

• Moves some responsibility back to the language, compiler and 

runtime

• A runtime/architecture will provide a particular execution model –

it is up to you to determine how (or if) your algorithms map to it
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Massively Parallel Processing

• In desktop land, processing improvements were largely 

incremental

• e.g. two processor system, 4 cores, 4x32 bit vectors

• What can you do if you need to tackle a REALLY large problem?

• Acceleration of 100x or more

• Massively parallel system (likely a cluster)

• GPU technology has evolved into a massively parallel general 

purpose computing platform, right on your computer!

• Disclaimer: it is not your typical architecture!

5



Historical GPU architecture
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GP-GPU

• GPUs deliver a lot of computational horsepower, have been 

increasing rapidly over the years

• As graphics pipelines evolved, the vertex and shader stages 

became programmable units

• Each contained their own instruction set

• Shader programs had lots of options, including different shading 

and lighting modules, texture mapping, and reflections
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GP-GPU

• People noticed they could ‘hijack’ shader programs to do non-

graphics things

• Data input via texture buffers or other memory sources

• Frame buffer contained output pixels

• An exciting POC but significant limitations

• GPU wasn’t really intended to be used this way, awkward to set up

• Instruction set not as robust as CPU operations

• Limitations in communication among shaders

• Datatype constraints

• Limited tool support
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CUDA Architecture

• “Compute Unified Device Architecture”

• No more discrete vertex processors and shaders

• Massive array of processing elements

• General purpose programming model

• SPMD (single program, multiple data) paradigm

• Facilitate execution of more arbitrary computational tasks with a 

variety of datatypes

• Expanded instruction set for computation

• Official tools for developing, debugging

• Applications

• Image processing, physical modeling, machine learning, matrix 

algebra, convolution, correlation, sorting
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CUDA Architecture
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Streaming Multiprocessors

• Streaming Multiprocessor (SMP) contains

• Streaming Processors (SP)

• Super (special) Function Units (SFU)

• Texture Unit

• Shared memory, register memory

• L1 caches for instruction, data

• Streaming processors are ‘simple’

processing elements

• No vector operations, no OOO execution

• Executes a thread from the larger task pool

• Relies on switching among threads to

cover latency of computation and memory

operations
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CUDA Threading Organization

• A kernel denotes a program to

be executed on the GPU device

• All threads are executing the

same kernel (SPMD)

• Threads are organized into

groups called Blocks

• The overall problem is partitioned

into blocks (denoted a Grid)

• Every thread is provided ID info

threadIdx and blockIdx along with

blockDim and gridDim
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Simple Example

• Consider a simple operation where we want to scale every pixel 

by a certain factor

• Conventional CPU code

• GPU Kernel code
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void scale(float* img, int N, int M, float scaling) {

for (int y = 0; y < M; y++) {

for (int x = 0; x < N; x++) {

img[x + N * y] *= scaling;

}

}

}

void scale(float* img, int N, float scaling) {

xindex = threadIdx.x + blockIdx.x * blockDim.x

yindex = threadIdx.y + blockIdx.y * blockDim.y

img[xindex + N * yindex] *= scaling;

}



Thread Scheduling

• Each Thread Block is divided into Warps

• Warps are a group of threads that execute concurrently on an 

SMP

• Warps are scheduling units in SMP

• The SMP has zero-overhead warp scheduling

• Warps whose next instruction has its operands ready for 

consumption are eligible for execution

• Eligible warps are selected for execution on a prioritized scheduling 

policy

• All threads in a Warp execute the same instruction when selected
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Threading and Block Scheduling

• Threads are an extremely light weight construct in CUDA

• For full utilization, 1000s of threads will be required

• Each thread requires some resources (registers, shared memory)

• The resource requirements of a block is the aggregate 

requirements of all threads in the block

• Blocks are scheduled to run on the SMPs

• No particular order or organization guarantees

• Number of blocks assigned to each SMP depends on block 

resources vs. SMP resources

• A key design decision is that threads within a block can 

cooperate but threads from different blocks cannot 
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Memory Hierarchy

• Registers

• Private per thread

• Stores intermediate values in computation

• Compiler-determined

• Shared Memory

• Shared by threads of the same block

• Inter-thread communication

• Global Memory

• Shared by all blocks, all threads

• Inter-block* and inter-grid communication
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Concurrency and Communication

• Threads within a block logically execute concurrently but only 

threads within a given warp physically execute concurrently

• Ordering of execution among warps is not guaranteed

• Communication among all threads (within or between warps) is 

possible via Shared Memory

• Shared memory is low-latency memory within an SMP

• Required shared memory declared as part of block properties

• Shared memory is visible to all threads in a block but not with other 

blocks

• Communication via write/read operations to shared memory

• Synchronization primitive __syncthreads() provides a barrier 

among all warps to enforce correctness
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Branch divergence

• All threads within a warp

execute the same instruction

at the same time

• Threads can conditionally

execute code based on

thread index or other input

• This is managed in the hardware by executing both paths and 

using predicates

• If the predicate (conditional) for an instruction is false, the 

instruction becomes a no-op

• Incurs runtime overhead of executing both branch paths (branch 

divergence)

• If all threads within a warp branch the same way, this is avoided
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void kernel_func() {

if (threadIdx.x % 2) {

// do something on odd pixels

} else {

// do something on even pixels

}

}



Memory Bank Conflicts

• In a parallel machine, many threads access memory at the 

same time

• In order to achieve high memory bandwidth, memory is divided 

into banks

• Each bank can service one address per cycle

• Total memory subsystem can service as many simultaneous 

accesses as it has banks

• There are as many banks and SPs, however access patterns 

are not restricted

• Multiple simultaneous accesses to a bank result in a bank conflict 

and are serialized
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Memory Bank Conflicts
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Memory Bank Conflicts
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Memory Coalescing

• Access to global memory is via a very wide bus

• Reading or writing to a particular address involves accessing the 

full block of data at that address

• In order to make memory access efficient, threads should 

access contiguous pieces of data, so that individual requests by 

different threads coalesce into a single memory operation

• Without coalescing, global memory accesses are serialized, 

inducing extra latency and wasting the memory bus bandwidth
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Texture Unit

• Present in each SMP

• Accesses read-only texture

memory from dedicated cache

• Includes hardware for performing

linear interpolation among samples

• Automatically handles boundary effects

• Has some associated latency, but allows for off-loading some 

computation / memory effort
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Efficient GPU Programming

• Key features of highly efficient GPU algorithms

• Massively parallel

• Little to no branch divergence

• Low memory requirements

• High occupancy (number of warps scheduled for an SMP)

• SMP resources divided by resource requirements per block 

(registers, shared memory) 

• Other tweaks

• Memory optimizations (preload into shared memory, bank conflict 

elimination, global memory coalescing)

• Control flow to reduce branch divergence

• Leverage texture unit
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OpenCL / GPU on Android

• It is possible to develop CUDA programs natively for nVidia

based chipsets

• OpenCL is a standardized abstraction for high performance 

computing platforms and encompasses CPUs, GPUs, and other 

hardware accelerators

• Using OpenCL can provide most cross-platform support among 

Android devices

• OpenCL is supported as part of the Android SDK and is 

recommended

• Some library routines in OpenCV can also take advantage of 

GPU resources for acceleration
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This Week

• Revised Final Project Proposals (with ‘final’ Assigned 

Lab results) due this week

• Final project work

• Milestone 1 demo next week
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