
Overview of

Embedded Digital Signal Processing

1

Embedded Digital Signal Processing (DSP)

• “Signal”: physical quantity that carries information

• “Processing”: series of steps to achieve a particular end

• “Digital”: done by computers, microprocessors, or logic circuits

• “Embedded”: part of a complete device (hardware), often with
real-time constraints

2

Example: Speech Recognition using DSP

3

DSP Appliances

4

Smart Phones

Example Smartphone Chip

5

6

Digital Cameras

www.dxo.com

Original After DSP

7

Multimedia Compression

• Provide the crucial technology for:

• WWW with multimedia content (e.g. audio, image, and video)

• DVD

• Digital cameras, camera phones

• MP3, iPod

8

Medical Imaging:
Ultrasound (US), Computer Tomography (CT),

Magnetic Resonance Imaging (MRI), …

www.imaginis.com/ct-scan

9

Background for DSP

Digital
Signal

Processing

Mathematics Physics

Application
domain

Computer
Science

Best Practices in Developing DSP Software:
Systematic Debugging

• First, develop and test DSP algorithms in high-level languages
(Python, MATLAB)

• Use test signals

• Examine intermediate signal outputs

• Sample values

• Signal blocks

• Visualize signals in time, in frequency domains

• Quantify algorithm performance (over datasets, need ground truth)
• Signal-to-noise ratio

• Recognition accuracy

• Then, port tested algorithms into embedded platform (Android)

• Sometimes, need to go back and refine algorithms in Python

10

11

Practical Considerations

• Reducing power is critical for mobile real-time devices

• Battery drain is #1 reason for users to turn off an app

• Ways to save power

– 16-bit fixed point, not floating point

– Low clock speed/voltage through parallelism

– Simple, low-power microprocessor architecture

– Program in low-level languages

– Use hardware accelerators, or dedicated computing units

ECE 420 Overview

• First half: Structured Labs (7)

• Embedded DSP development framework

• High-level (Python) à Embedded (Android with Java/C)

• Different signal modalities and interfaces: IMU, audio, visual

• Basic DSP algorithms

• Digital filtering

• Spectral analysis

• Auto-correlation analysis: pitch detection/correction

• Image and multidimensional signal processing

• Second half: Individual Projects

• Start with an Assigned Project Lab (in Python; 2 weeks)

• Design Review à Plan for Deliverables

• Milestones (3)

• Final Project Demo and Presentation à Report
12

Next Lab: Digital Filter

13

Audio A/D and D/A in Android

• We will use OpenSL ES (Sound Library Embedded System)

14

Filter Design:
Mapping Analog to Digital Frequencies

15

If we sample an analog signal xa(t) to obtain a digital signal xd[n] = xa(nT)
using the sampling frequency fs = 1/T , then their Fourier transforms are related
by:

Xd(!) =
1

T

1X

k=�1
Xa

✓
! � 2k⇡

T

◆
.

Hence, assuming no aliasing (i.e. Xa(⌦) = 0 for |⌦|  ⇡/T) then an analog
frequency ⌦ = 2⇡f (where |⌦|  ⇡/T) is mapped to a digital frequency

! = ⌦T =
2⇡f

fs
.

In particular, the Nyquist frequency f = fs/2 is mapped to ! = ⇡.

Digital Filter Implementation

16

Given a digital filter

H(z) =
B(z)

A(z)
=

b0 + b1z
�1

+ . . .+ bKz�K

1 + a1z�1
+ . . .+ aLz�L

,

then the filtering by H(z):

x[n] �! H(z) �! y[n]

can be implemented for each n as:

y[n] = (b0 x[n]+ b1 x[n�1]+ . . .+ bK x[n�K])� (a1 y[n�1]+ . . .+aL y[n�L]).

