BackDoor: Sensing Out-of-band Sounds through Channel Nonlinearity

Nirupam Roy

ECE-420 Guest Lecture - 30th October 2017 University of Illinois at Urbana-Champaign

Microphones are everywhere

Microphones are everywhere

Microphones record audible sounds

Inaudible, but recordable!

Inaudible, but recordable!

Works with unmodified devices

It's not "near-ultrasound"

Exploiting fundamental nonlinearity

What can we do with it?

Opportunities: Acoustic jammer

Application: Acoustic communication

Threat: Acoustic DOS attack

Threat: Acoustic DOS attack

Blocking 911 calls

Threats: Inaudible voice attack

Talk outline

- 1 Microphone Overview
- 2 System Design
- 3 Challenges
- (4) Evaluation

Talk outline

- 1 Microphone Overview
- 2 System Design
- 3 Challenges
- (4) Evaluation

Talk outline

- 1 Microphone Overview
- 2 System Design
- 3 Challenges
- (4) Evaluation

Talk outline

- (1) Microphone Overview
- 2 System Design
- 3 Challenges
- (4) Evaluation

Ultrasonic speaker

Frequency modulation

Ultrasonic speaker

- Signal self-demodulation
- Piezoelectric ringing effect
- Carrier intermixing
- Spectrum inversion
- Carrier power allocation

Talk outline

- (1) Microphone Overview
- 2 System Design
- (3) Challenges
- 4 Evaluation

Threats: Inaudible voice attack

Live Demo: Attacking Amazon Echo though inaudible sound

Hardware generalizability

Implementation

Communication prototype

Jammer prototype

Communication performance

More power can increase the distance

BackDoor jammer

Takeaways

- Specially designed inaudible sound can be recorded with unmodified microphone
- 2 It can make acoustic jammer possible and also can be a communication channel
- It also uncovers threats like acoustic Denial-of-Service attacks

Ripple: Communication through Physical Vibration

Short range communication: a new need of this decade

Short range communication: a new need of this decade

Driving forces of short range communication research

Driving forces of short range communication research

Driving forces of short range communication research

Visible Light Communication

Acoustic NFC

Physical vibration: a new mode of communication

Vibration Motor

Vibration Motor

Applications: Mobile Money Transfer

Applications: Mobile Money Transfer

Applications: Authentication with Ring

Applications: Authentication with Ring

Applications: Authentication with Ring

Applications: Body-Area Network

Or...may be you can come up with a better one

NEW PROPERTY.

Ripple: Communicating through Physical Vibrations

Ripple data-rate

```
0.2K Ripple - I
```

0.3K Ultrasound

1.0K Visible Light

9.6K Infrared

Ripple - II 32K

NFC

106K

Ripple-II: Faster Communication through Physical Vibration

PHYSICAL VIBRATION

AUDIO STREAMING DEMO

(32KBPS)

Thank You

Website: http://nroy8.web.engr.illinois.edu

SyNRG group website: http://synrg.csl.illinois.edu