
Embedded Systems:
Concepts and Practices
Part 2
Christopher Alix
Prairie City Computing, Inc.

ECE 420
University of Illinois
November 27, 2017

Outline (Part 2)

• Software challenges in Embedded Systems

• Key decisions in ES software development

• ARM and DSP Architectures

• Low-cost ES Prototyping Platforms

• Trends and opportunities in the ES industry

Embedded System
 Definition

• A dedicated computer performing a specific
function as a part of a larger system

• High-reliability systems operating in a
resource-constrained environment (typically
cost, space & power)

• Essential Goal: Turn hardware problems into
software problems.

Software Challenges
 "Black Box" Problem

Limited input/output and user interface presents
challenges, especially during debugging.

Much embedded software is cross developed—
written and debugged in the comfort of a desktop
PC, and then downloaded into the system under
development for final testing and deployment.

Software Challenges
 "Black Box" Problem

Embedded processors typically include a hardware
interface (usually JTAG) for loading software and for
doing remote debugging from a host computer.

A development version of the hardware is often built
first with extra interfaces for testability, which are
then stripped out of the final design.

Systems often include a connector for a "debug
board" or "breakout board" which includes extra
connections for debugging.

Software Architecture
 Realtime Requirements

Many ES have tasks that must be performed
reliably at a specific rate. (e.g., capture a new
audio sample every 21us, open a fuel injector
within 10ms of a TDC indication)

Embedded OSes needs specialized features to
satisfy the need for real-time performance (fine
grained priority controls, low-latency interrupt
handling, priority inversion, etc.)

• Real-time performance can generally be
achieved with careful software design

• Proving real-time correctness can be
hard--"worst cases" can be rare and subtle

• I/O processors can handle time-critical tasks
e.g., Programmable Realtime Units (PRU) in
the TI "Sitara" (AM335x) CPU family

Software Architecture
 Realtime Requirements

Software Architecture
 Realtime Requirements

Realtime means “consistent”...

it doesn’t necessarily mean “fast.”

• Many ES subject to interruption of power
without orderly shutdown (battery dies,
user yanks the power cord, etc.)

• Filesystems need to be fault-tolerant and able
to recover from any state (redundancy,
journaling, rewrite-before-erase, etc.)

• Long-lifetime systems run into write-cycle
limitations (load-leveling, RAM disks, etc.)

Software Architecture
 Data Retention

• In the desktop world, computing power has
grown faster than software complexity.
For all but the most compute intensive tasks,
performance limitations are rarely a factor.

• Even in the server world, throwing more
processors at a problem is usually cheaper
than extensive software optimization efforts
(hardware is cheaper than programmers!)

Software Architecture
 Revenge of the Kilobyte

•
1980: 16KB RAM, 4 MHz clock, 10MB HD

1200 bps modem
 1990: 16MB RAM, 25 MHz clock, 1GB HD
 10 megabit Ethernet
 2016: 16GB RAM, 3 GHz clock, 2TB SSD
 Gigabit Ethernet

• Improvement by orders of magnitude
(103 speed, 105 storage, 106 memory)

Software Architecture
 Revenge of the Kilobyte

• In the ES world, cost and power constraints
require "making every cycle count."

Intel Quad-Core i7-4930MX CPU
Power consumption: 57 W

1 AA battery = 2.5 W-H
 Solar (PV) panel (2017) = 300 W/m2

Vitatron E10A1 (...?)
 2.5 W-H (10.4 years), 27uW

Software Architecture
 Revenge of the Kilobyte

• Developing for many embedded systems is
like developing for a 1980-era desktop...

• But at least we've got faster machines
to run the development tools on!

Software Architecture
 Revenge of the Kilobyte

Software Architecture
 Revenge of the Kilobyte

Doing more with less...
Memory/Processing Trade-offs

 (look-up tables v. calculations)

Profiling and Optimization

 Native Code (C/C++, Assembler)

 "Stupid Math Tricks"
fixed-point
shift-add multiplication
reciprocal division
alternatives to complex functions

Software Architecture
 OS or not?

Simple “bare metal” systems run a single
main-loop program that does everything. Usually
compiled C/C++, with some assembly language in
the simplest, most cost-sensitive systems.

In between, there are (typically proprietary)
quasi-OSes designed specifically for embedded
applications, typically on specific processors
(e.g., TI-RTOS, OS-9, LynxOS, FreeRTOS)

More complex systems use an OS, often Linux.

Software Architecture
 GNU/Linux

Free/Open Source Software (FOSS) technologies
(GNU compiler tools and GNU/Linux operating
system) are ubiquitous in embedded system
development

“Free as in freedom” access to source code
simplifies debugging, minimizes development risks
and extends product lifetime (important for ES)

“Free as in beer” lack of licensing fees provides
additional pricing flexibility/profit margin, especially
for very low cost devices

Software Architecture
 GNU/Linux

Lots of complexity and overhead, but can be
trimmed down with custom kernel configuration and
a "Linux from scratch" approach to system building.
(5-second boot times achievable for some systems)

Recent (2014+) work has improved the ARM port,
despite some transition hassles. "Device tree"
model replaced a lot of kernel configuration, sped
up boot time and cleaned up the code. A lot fewer
special cases and a lot more consistency.

Mature, comprehensive real-time support in the
mainline kernel

Software Architecture
 GNU/Linux

Upsides:

Support for many processors and peripherals (often
no need to do custom device driver development)

Powerful "distribution builder" tools like
Yocto/OpenEmbedded and Buildroot make it easy to
build an entire Linux system

Lots of leverage; essentially the same workflow and
tools as desktop/server Linux development

Software Architecture
 GNU/Linux

Downsides:

Fairly high minimum hardware requirements limit it
to "real" processors (ARM, x86); limited support for
DSP families; not an option for lower-end uCs

Constant updates require either a commitment to
continuous integration, or significant "catch-up"
work to migrate to new kernel releases

Boot time can be improved, but still unacceptable
for "instant-on" applications

Software Architecture
 GNU/Linux

Risks:

Combinations of versions, platforms, distributions,
processors, system architectures are nearly
infinite--unlike in the mainstream software
development world, you may be the only person in
the world trying to do what you’re trying to do.

Maximize your leverage by starting from “known
good” reference designs. There's safety in
numbers...try to run with the herd rather than
reinventing the wheel!

Software Architecture
 Android

Operating system for mobile devices developed by
Google and the Open Handset Alliance (mostly for
mobile phones, but is applicable to many non-phone
ES projects too!), 2008

2 billion active devices worldwide (May 2017)

GNU/Linux plus Android-specific tools

Applications written in Java and run on Google’s
proprietary Dalvik/ART virtual machine

Software Architecture
 Android

Android phones and tablets from many vendors;
reference designs; OpenEmbedded support

Advantage: maturity, commercial acceptance,
broad hardware support. libhybris: leverage
Android binary device drivers under Linux

free-electrons.com
Stand-up training, w/~2000 slides online under a
creative commons license. Android, Linux system
development, Linux device drivers, etc.

Software Architecture
 RTOSes

Lightweight, fast, efficient systems, usually specific
to a specific processor or processor family
 TI-RTOS (was SYS/BIOS, was DSP/BIOS)
 Analog Devices VDK
 FreeRTOS, VxWorks, QNX, OS-9, LynxOS

Provides support for process scheduling, interrupt
handling, memory management, interprocess (and
interprocessor) communication, etc.

Often combined with a PSP (Platform Support
Package) which provides rudimentary device
drivers--sometimes more trouble than they're worth
but at least useful as sample/starter code

Thoughts on Software

Typically 10:1 (or higher) ratio of software engineers
to hardware engineers on many ES projects

Selection of development and debugging tools, in
concert with hardware debugging support

Software is key to debugging the hardware, and vice
versa--groups must work closely together at times

User interface design is important to the quality and
usability of the resulting product

Thoughts on Software

Software makes the hardware work (or not work)

Open-source tools common in ES world

Debugging environments vary widely based on the
capabilities of the hardware

Software is easier to change than hardware, but
quality is equally important

ARM Architecture
 Unifying ES Development

32-bit and 32/64-bit variants
Started by Acorn Computers (UK) in 1983
ARM Holdings bought by Softbank in 2016

Core licensees (~500)
(Companies which include ARM CPU on their chips)

Architectural Licenses (~15)
(Companies which design their own CPUs based
on the ARM instruction set)

ARM Architecture
 Unifying ES Development

Licensees include Analog Devices, Apple, AMD, Atmel,
Broadcom, Qualcomm, Cypress, Huawei, NXP, Nvidia,
Renesas, Samsung, STM, TI, Altera (Intel), Xilinx.

15 billion ARM-based chips sold per year (2016)

Dominant market share
Smartphones (95%)
Computer peripherals (65%)
Hard disks and SSDs (95%)
Automotive (50% overall; 85% infotainment)

ARM Architecture
 Unifying ES Development

Brought order to a chaotic industry with dozens of
different vendor-proprietary processor architectures

Enabled a common set of tools, techniques and
technologies to be shared across the ES industry
(one Linux port, one gcc/g++ target, etc., etc.)

8- and 16-bit MCUs still dominant in very-low-power,
very-low-cost applications, and DSP architectures
dominant in signal-processing domains, but ARM
basically has everything else.

DSP Architectures
 Digital Signal Processing

Special-purpose processors optimized for performing
specific mathematical operations, usually in parallel

Often able to do specific signal processing tasks
substantially faster than a general-purpose CPU, at
lower clock speeds (more work for less power!)

The right choice where an application requires large
numbers of repetitive mathematical computations

DSP Architectures
 Digital Signal Processing

Texas Instruments
C5500 series: ultra low power, fixed point
C674x series: low power fixed/floating point

 C66x series: multi-core fixed/floating point
 C66x + ARM: hybrid SoC for complex devices

(DSP does signal processing, ARM runs apps)

Analog Devices
SHARC: high-performance floating point
Blackfin: high-performance fixed point

Many variants with different peripherals, etc.

DSP Architectures
 Digital Signal Processing

Complicated instruction sets, often VLIW (very long
instruction words); numerous functional units with
multiple data transfers going on per clock cycle

A. Example: TI TMS320C674x
2 multipliers

one 32 x 32, two 16 x 16, or four 8 x 8 per cycle
6 Arithmetic Logic Units
Dispatches up to 8 32-bit instructions per cycle

A. Hardware support for "loop buffers" (allows for
highly optimized pipelined loops of short sequences)

DSP Architectures
 Software Implications

Code generation is very complicated and best left
to a compiler; hand-coding is done very rarely and
only in small, extremely time-critical routines.

gcc/g++ support some DSP families, but never
as good as the vendor's proprietary compilers--
lots of very chip-specific optimizations required.

Best performance achieved by giving the compiler
"hints" about loop counts, alignment, etc.

Algorithm and data structure design is critical.

Arduino

Atmel MCUs up to ARMs
$15-$50

Wide variety of “shields” for expandability
Open-source hardware design
> 1M sold

www.arduino.cc

TI MSP430 LaunchPad
 $12

(One of Many)
MSP430F5529 16-bit MCU
JTAG, UART, USB

gcc or TI compilers (free)
support MSP430 compilation

"BoosterPacks" for expandability
Design files available
Target: small battery-operated applications

TMS320C6748 LCDK
 $195

Up to 456MHz 32-bit DSP
VGA Video Output
Audio Codec
USB x 2

Also available for OMAP-L138, which is an
ARM core and DSP core on the same chip

Schematics Available (Reference Design)
Target: multimedia processing

Raspberry Pi B
 $35

700 MHZ ARM CPU
512 MB RAM
10/100 Ethernet
HDMI Video Output
2 USB 2.0 Ports
MPEG-2 and MPEG-4 Video Support
Third-party peripheral modules available
Broadcom processor; some peripherals proprietary

and poorly documented

~10M sold as of 3Q 2016 (many to schools)
www.raspberrypi.org

Beagleboard-xM
 $150

TI DM3730
P-O-P Memory
SD Card Slot
S-Video and HDMI
Audio Line In/Out
USB, Ethernet

Published open
source hardware
design

Gumstix Overo
 $120-$220

TI DM3730
P-O-P Memory
Micro-SD Card Slot

Optional Wi-Fi

Single +3.3V Supply

All I/O on two high
density connectors

Beaglebone Black
 $45

1GHZ TI AM3359 "Sitara"
ARM Cortex-A8 CPU w/2 PRUs
Ethernet, USB x 2
512MB RAM, 4 GB FLASH
Boots Linux from SD card

Wide variety of expansion “capes”
Full schematics and design files available
500,000+ sold as of late 2012

www.arduino.cc

Wandboard Quad+
 $140

1GHZ NXP i.MX6 CPU
Quad ARM Cortex-A9 Cores
GB Ethernet, WiFi, BT, USB x 2
2GB RAM
3 graphics engines
Boots Linux from SD card

Realtime video processing, image recognition,
High-performance graphics applications

Wandboard PICO-PI
 $80

1GHz NXP i.MX7 CPU
ARM Cortex-A7+ Core
Gig Ethernet, Wi-Fi, Bluetooth
4GB Flash, 512MB RAM

Designed specifically for Google's "Android Things"
(IoT development ecosystem based on Android)

Target applications are robotics, remote sensing,
UAVs, home automation systems, etc.

Shipment began late March, 2016

ES Development
 Software Skills

-- Linux (desktop skills translate to ES work!)

-- C/C++ (Linux Kernel is still straight C, but
few reasons left not to use full C++)

-- gcc, g++, gdb, git
understand the toolchain end-to-end

 (look at assembly listings and load maps!)

-- Yocto/OpenEmbedded and Buildroot

-- Eclipse (4th-gen open-architecture I.D.E.)
CCS (TI DSPs), xSDK (Xilinx), more

ES Development
 Software Skills

-- Familarity with common CPU architectures
(ARM, MCU and/or DSP families)

-- Bootloaders and the boot process
(Getting from power-on to "Hello World")
U-Boot, Barebox

-- For mobile development: Android, iOS

Closing Comments
 Observations

Managers and engineers on ES projects need a solid
understanding of hardware and software issues

Hardware and software development are done in
parallel, by multiple groups, so agreement on
standards and protocols and a clear specification is
critical to keep the project moving forward

Right the first time: An extra hour of design time
can save days or weeks of development time.

Closing Comments
 Observations

Once exclusive to HPC, "Artificial Intelligence"
applications (really just fast search and signal
processing) are becoming a big driver of innovation and
performance requirements in the embedded space.
Voice-input and computer vision for autonomous
vehicles (drones and road vehicles) are hot areas.

"Embedded" now includes mobile (1.5B units a year
since 2005), consumer, wearable, control systems,
sensing, autonomous...what part of ECE/CS isn't
embedded at this point?

We're going to need a better name!

Closing Comments
 Opportunities

Easier than ever for small companies to bring
sophisticated embedded systems to market

Hobbyist-class development platforms
FPGA-based designs
Outsourced PCB fab and assembly
F/OSS (including FPGA cores…opencores.org)
3D printing, CNC laser cutting and machining
Kickstarter, e-Commerce, global communities

Closing Comments
 Opportunities

Unlike most engineering students, ECE and CS
students don't need to play with toys.

The tools ECEs use in the classroom, the living
room or the maker space are the tools being
used in the "real world."

Make! Hack! Create! Get hands-on experience!

Then, never stop learning.

Questions

Thank you!

alix@ieee.org

