Embedded Systems: Concepts and Practices Part 1

Christopher Alix Prairie City Computing, Inc.

ECE 420 University of Illinois November 14, 2017

Outline (Part 1)

- Definitions and Examples
- Hardware Engineering Challenges
- Embedded Processor Examples

TI MSP430F2001
TI OMAP DM3730
Atmel ATtiny4
Xilinx FPGAs/MicroBlaze/Zynq
Microsemi IGLOO FPGA

- Closing Comments
- Preview of Part 2 (April 25th)

Embedded System Historical Definition

- A dedicated computer performing a specific function as a part of a larger system
- Saw commercial use beginning in the 1970s as an alternative to hard-wired control and logic circuitry (engine controls, guidance systems, industrial process controllers)
- Essential Goal: Turn hardware problems into software problems.

Embedded System Modern Definition

- High-reliability systems operating in a resource-constrained environment (typically cost, space & power)
- Excludes general-purpose computers, and non-computerized devices (now rare!)
- Often applied to mobile computing due to similarity in requirements, although not "embedded" per se

Are ES Software or Hardware? "Yes"

 No externally-visible difference between hardware and software functions

- Well-defined, fundamental, and extremely performance-sensitive functions are generally implemented in hardware.
- Complex, non-performance-sensitive, and/or likely-to-change functions are generally implemented in software.

Embedded Systems Examples

Consumer

Cellular Handsets
Game Consoles
Media Players
TV Set-Top Boxes
Kitchen Appliances

Vehicular

Engine Control
Driveline Control
Anti-Lock Braking
GPS Receivers
Tire monitoring
Entertainment

Infrastructure

Utility meters
Traffic signal control
Structure monitoring
Surveillance
HVAC control
Parking meters
Battery Management
Generator controls
Pipeline Safety

Medical

Pacemakers Measurement Drug Delivery

Industry

PLCs Motor Control Process Control

Defense

Vision Enhancers Communications UAV Systems

Computing

(computers within computers!)

Ford EEC "Old School"

EEC-I (1978, about same time as Apple II)
Proprietary 12-bit processor @ 3 MHz
"PM-11" after the DEC PDP-11
4K bytes of ROM, 256 bytes of RAM
Ignition timing, EGR valve & smog pump

EEC-IV (1983 through 1990s)
Intel 8061 8/16 bit processor @ 15 MHz
8K bytes of ROM, 256 bytes of RAM
Controlled 8 vehicle functions

Old School (Ford Motor Co. EEC)

"Megasquirt"

Open Source Fuel Injection Controller

Automotive Trends ECUs/vehicle, 2016

- Economy: 20+
- Volume Luxury: 50+
- Ultra Luxury: 100+

Communication via CANBus, Ethernet, wireless and other networks

After engine and transmission, the 3rd heaviest component in a modern automobile is the wiring harness

Lines of Code

Two F-Series Vehicles

- "Turn hardware problems into software problems"...a *lot* of software problems.
- Lockheed Martin
 F-35 Lightning II:
 30 million LOC
- 2017 Ford F-150, as per a claim made at the 2016 CES:

Complexity

Two F-Series Vehicles

- "Turn hardware problems into software problems"...a lot of software problems.
- Lockheed Martin
 F-35 Lightning II:
 30 million LOC
- 2017 Ford F-150, as per a claim made at the 2016 CES: 150 million LOC

DJI NAZA-M v2

UAV Flight Controller

- 32-bit DSP, GPS, compass, gyro, power management, external LED driver, etc.
- Up to 8 rotors; street price \$300

Engineering Challenges

Constraints typical in many ES designs

- Form Factor
 (size, shape, weight)
- Environment
 (shock, vibration,
 temperature, moisture,
 radiation, RF)
- Power

 (battery life, heat
 dissipation, surges)

Reliability, Security, Safety

Failures may cause injuries or property damage
Mission critical but often inaccessible

Cost\$ (or ¢!)

Hardware Challenges Form Factor

- Space Limitations
 Enclosure design often drives hardware design Highly-integrated chips minimize parts count (if you can turn off what you don't need!)
- Close collaboration with Mechanical Engineers is critical to project success
- 3D Printing/Rapid Prototyping gets better every day, and can avoid costly mistakes later in production

Hardware Challenges Form Factor

- Exotic PCB materials and techniques may be required Flexible circuits
 Very fine feature sizes
 Via-in-pad, laser-drilled microvias
- Tiny SMT devices, BGAs, etc. save space, but watch ratings, manufacturability and rework issues

(01005 is <u>really</u> small, and it's tough to solder that kludge wire dead-center under a BGA package...)

Hardware Challenges Environment

- Exotic PCB materials and techniques again High-temperature/pressure substrates (there's a reason FR-4 is cheap)
 Conformal coating (moisture, Pb-free Sn whiskers)
- "Shake and Bake"
 Shock Mounting
 Ingress Prevention (IP-xx standards)

Hardware Challenges Environment

Electromagnetic Compatibility (EMC) Emission:

Your device makes other devices not work Susceptibility:

Other devices make your device not work

- Both are bad
- Requires careful attention to electronic and mechanical design to ensure compliance

Hardware Challenges Power

- Minimize power consumption for...
 Battery life (per-charge and lifetime)
 Heat Dissipation
 Operating Cost
- Designing for Power Management
 (Not just a 5V rail and ground!)
 Many individually switchable power domains
 Integrated current and voltage monitoring
 Voltage and clock speed scaling

Hardware Challenges Power

- Not just "off" and "on"
 Low-power sleep modes
 Wake-up receivers, Bluetooth Low Energy, etc.
 Challenge: naming all the power modes!
- Beware of battery-draining "sneak paths"
 "Disabled" or "shut down" doesn't mean "off"
 Check those data sheets!
- External power has its own problems; design for and test extreme cases (surges, undervoltage, cranking)

Hardware Challenges

Reliability/Security/ Safety

- For critical applications, redundant systems with a "computer third party" to disable failing units
- Power-On Self Test (POST) capabilities,
 self-diagnostics, system health reporting
- Predict how systems may fail (risk assessment, fault tree analysis, etc.)
- Minimize effects ("fail in the right direction")

Hardware Challenges

Reliability/Security/ Safety

- Recover from software failures
 "watchdog" timers to restart after a crash
- Authentication and/or encryption to prevent or detect tampering with soft components
- Wireless or Internet-connected systems require added attention to security issues
- Audit and manage supply/manufacturing chain to ensure authenticity and quality of components

Hardware Challenges Cost

"To define it rudely but not inaptly, engineering is the art of doing that well with one dollar, which any bungler can do with two after a fashion."

--Arthur Mellen Wellington, c. 1887

Hardware Architecture Embedded Processors

- Architecture Options for Every Design 8-, 16-, 32-, 64-bit Optional floating-point, memory management
- High Integration
 Dedicated on-chip peripherals and coprocessors
 Minimizing chip count speeds design, saves power
- Complex, powerful power management Separate core, I/O, peripheral power Multiple low-power sleep/standby modes Companion PMICs for higher-end devices

Hardware Architecture Embedded Processors

- Sophisticated Timing
 Accurate interval timing for realtime performance
 Fast wake-up time
 Very low power timers
 Watchdog timers to recover after failures
- Pin Multiplexing
 Driving pins may be much of a chip's power budget
 Multiplex out test signals, unused chip functions

TI MSP430F2001

Block Diagram

16-bit embedded CPU with Flash, Comparator, 10 I/O Lines, Serial Port Low Performance, Low Price (\$0.50)

TI MSP430F2001

Form Factor

14-pin TSSOP or 16-pin PQFP, 0.25 cm²

Software configurable pinout (up to 5 choices for some pins)

JTAG support for in-circuit testability

(Dozens of other designs available)

TI MSP430F2001 Power Management

6 Power Modes

Externally triggered wake-up in < 1us

220uA active; 0.1-0.5uA standby The following six operating modes can be configured by software:

- Active mode AM:
 - All clocks are active
- Low-power mode 0 (LPM0);
 - CPU is disabled ACLK and SMCLK remain active. MCLK is disabled
- Low-power mode 1 (LPM1);
 - CPU is disabled
 ACLK and SMCLK remain active. MCLK is disabled
 DCO's dc-generator is disabled if DCO not used in active mode
- Low-power mode 2 (LPM2);
 - CPU is disabled
 MCLK and SMCLK are disabled
 DCO's dc-generator remains enabled
 ACLK remains active
- Low-power mode 3 (LPM3);
 - CPU is disabled MCLK and SMCLK are disabled DCO's dc-generator is disabled ACLK remains active
- Low-power mode 4 (LPM4);
 - CPU is disabled
 ACLK is disabled
 MCLK and SMCLK are disabled
 DCO's dc-generator is disabled
 Crystal oscillator is stopped

TI MSP430F2001

Software Environment

16-MHz MSP430 Processor Core

 1,280 bytes of flash, 128 bytes of RAM
 Small assembly or C programs
 "Bare metal" (no operating system)

Typical applications:

Utility metering

Simple portable medical devices

Sensor networks

TI MSP430F2001

Comparables

ENIAC, circa 1946 Aberdeen Proving Ground, Maryland

TI OMAP DM3730

Overview

Embedded CPU with ARM, DSP cores

"Kitchen Sink" onboard peripheral set video display interface and acceleration camera interface high speed serial interfaces multiple USB interfaces optimized for smartphone handsets

JTAG interface for debugging

High Performance = High Price (\$35)

TI OMAP DM3730 Block Diagram

TI OMAP DM3730

Form Factor

515-pin Ball Grid Array (BGA), 1 cm

347 pins on bottom, 168 pins on top for P-O-P memory chip

Software configurable pinout (up to 8 choices for some pins)

TI OMAP DM3730

Power Management

9 Top Level Power Domains with with independent supplies

PRCM (Power, Reset and Clock Module) "brain stem" can turn domains on and off

"SmartReflex" power and clock speed scaling

Up to 2W fully active; a few mW in standby modes

Companion power management chip (TPS65960) contains multiple power regulators, battery charger support, etc.

TI OMAP DM3730

Software Environment

- ARM Cortex A8 Processor

 Full memory management
 Linux main-line kernel tree support
 Supervisory and User Interface functions
- TMS320C64x DSP Core
 Access to private and system memory and I/O Supervised by ARM, but autonomous Dedicated DSP functions
- Task: Maximize efficiency by intelligent allocation of functions among ARM and DSP

Atmel ATtiny4 8-bit CPU in SOT-23

Atmel ATtiny4

 6 pins, 512b flash, \$0.44
 200uA @ 1.8V (active)
 25uA @ 1.8V (idle)
 0.1uA @ 1.8V (power-down)

Figure 1-1. Pinout of ATtiny4/5/9/10

FPGA Technology

- Field Programmable Gate Array
- "Grab Bag" of hardware on a single chip
- Configures itself on power-up, usually from a specialized low-cost serial FLASH memory
- Often used as a "front end" to reduce CPU processing demand or pin count

Xilinx (www.xilinx.com)
Altera (www.altera.com)

FPGA Technology (continued)

- Powerful design tools generate FPGA "code" using software-like descriptions in Hardware Description Languages (VHDL, Verilog)
- Designs can be extensively simulated
- Designs can be converted into ASICs (Application Specific Integrated Circuit) for lower cost in very high volume products

FPGA Technology (continued)

 Many hardware functions can be purchased as IP (intellectual property) "Cores"--FPGA code that can be securely dropped into an existing FPGA design.

(Audio/video codecs, network communication, radio modulation/demodulation, encryption/decryption...)

 The third-party marketplace for FPGA intellectual property has created a means to monetize hardware design innovations without having to build hardware

FPGA Technology (continued)

- A "Soft Core" CPU and peripherals can be implemented on an FPGA
- Some CPU architectures are available as IP (intellectual property)--VHDL or Verilog code
- IP also available for complicated I/O tasks (USB, FireWire, Ethernet, audio and video encoding/decoding, memory controllers, etc.)
- True single-chip solution for some systems

Xilinx MicroBlaze™

Soft-Core Processor

- Implemented on a Xilinx FPGA
- Any combination of standard, custom or user-modified peripherals
- Shares FPGA with other user-defined hardware

Altera's Nios II is comparable

Xilinx MicroBlaze™ On Spartan-3E FPGA

- Spartan XC3S1600E (\$80 in Q1K)
 376-pin BGA package (23mm x 23mm)
 33,192 "Logic Cells" (4-input LUTs)
 36 dedicated multipliers
 36 4K-byte RAM blocks
- MicroBlaze core itself uses ~1,000 LUTs
- Peripherals use additional space Parallel port (23), Ethernet (1,800)
- Typical instance is ~25% of a 1600E,
 75% remaining for user hardware

Xilinx MicroBlaze™ On Spartan-6 FPGA

- Spartan-6 LX and LXT Series

 144 to 900 pins (8x8mm to 31x31 mm)
 3,800 to 147,000 Logic Cells (LUTs)
 \$10-\$320 (Q1K)
- Some units have PCI Express endpoints, multi-gigabit SerDes, DDR3 controller)
- Footprint compatibility for scalability (same board layout, different chips)

Microsemi* Igloo Nano Ultra low-power FPGA

- Range of form factors
 36 to 100 pins (3x3 mm to 14x14 mm)
 260 to 6,144 "VersaTiles" (D flip-flops)
 \$4-\$15
- Self-configuring from onboard Flash
- As low as 1.2V power supply
- 2 uW standby power in "freeze mode"

*formerly Actel

Microsemi Igloo Nano Ultra low-power FPGA

No-cost, Royalty-Free Processor Cores

CoreABC: Very simple, programmed in assembly language, internal memory

Core8051, CoreM1: More complex, programmed in C, external memory

APB Bus: Lots of peripherals (UART, SPI, I2C, GPIO, Timers, 10/100 Ethernet, etc.)

Microsemi Igloo Nano Starter Kit (\$99)

Soft Core Processors Practical Considerations

- Since everything is "soft," hardware design is greatly simplified—some designs are virtually single-chip
- Highly scalable—runs on FPGAs from \$5 to \$5,000 depending on peripheral requirements
- Slower than comparably-priced hard core processors, but custom peripherals can speed up some tasks
- For increased performance, consider hybrids: FPGAs with onboard hard core processors, or onboard hard core peripherals (e.g., gigabit Ethernet or MPEG-4)
- Makes fast-track design even faster--can make "hardware" changes without changing hardware

Xilinx Zynq Hybrid FPGA

- "PS" (Processor Subsystem): 2 ARM Cortex-A9 procesors and a lot of useful peripherals
- "PL" (Programmable Logic): Configurable FPGA logic blocks (multiple sizes available)
- Standard buses connecting PS and PL; interrupts
- Some I/O pins accessible directly by PS, so can be used prior to loading FPGA bitstream
- Best of both worlds (for some designs)

Xilinx Zynq-7000 Hybrid FPGA

Closing Comments

- Embedded systems are found in almost all product areas due to the power of being able to combine hardware and software in the most appropriate way to solve a given problem
- ES present significant engineering challenges in terms of physical design, environment, power, reliability, security, safety and cost
- Developing embedded systems requires balancing many competing factors
- Many specialized processors and support chips are optimized specifically for embedded applications

Part 2 Preview

- Software challenges in Embedded Systems
- Key decisions in ES software development
- ARM and DSP Architectures
- Low-cost ES Prototyping Platforms
- Trends and opportunities in the ES industry

Questions

alix@ieee.org