Lecture 21: Transformer

Mark Hasegawa-Johnson
These slides are in the public domain

University of lllinois

ECE 417: Multimedia Signal Processing

@ The Cauchy-Schwartz Inequality and Cosine Distance
© Smart PCA

© Attention

@ Transformer

© Multi-Head Attention

@ Conclusions

Cauchy-Schwartz
°

Outline

@ The Cauchy-Schwartz Inequality and Cosine Distance

Cauchy-Schwartz
©0000

The Cauchy-Schwartz Inequality

The Cauchy-Schwart inequality says that, for any two vectors
x=1[xt,....,xn]" and y = [y1,...,yn]",

-
Ix "yl <]yl
If we define the unit vectors as follows,
X = TR y =T
Iyl

then the Cauchy-Schwartz inequality says that

—1<x"y<1

Cauchy-Schwartz
0®000

The Cauchy-Schwartz Inequality: Proof

Suppose we have a particular x, and we want to:
@ choose yi, ..., yn in order to maximize the dot product,

N
xTy= Z XiYi
i=1
@ subject to the constraint that the length of y is fixed, say,
N
1= v
i=1

This can be done by choosing yi, ..., yny to maximize the following
Lagrangian:

N N
L{y) =D xiyi+A <Zy,'2 - 1)
i=1 i=1

Cauchy-Schwartz
00®00

The Cauchy-Schwartz Inequality: Proof

N N
L{y) =D xiyi+A <Zy,'2 - 1)
i=1

i=1

Setting g—f = 0 yields:

Xi
Yi = _57
There are two values of A that satisfy the constraint ||y|| = 1.
They are:
Yi= A

]l

Cauchy-Schwartz
000e0

Cosine Distance

The Cauchy-Schwartz inequality
can be written as:

—1<xTy <1,

where X = ﬁ and y = Hiill

This is an N-dimensional

generalization of the 2D

geometric interpretation of the (s

dot product:

Cos ¢ = <X,y YJ

. CC-SA 4.0, https://commons.
y =cos¢ wikimedia.org/wiki/File:
Cauchy-Schwarz_inequation_
in_Euclidean_plane.gif

https://commons.wikimedia.org/wiki/File:Cauchy-Schwarz_inequation_in_Euclidean_plane.gif
https://commons.wikimedia.org/wiki/File:Cauchy-Schwarz_inequation_in_Euclidean_plane.gif
https://commons.wikimedia.org/wiki/File:Cauchy-Schwarz_inequation_in_Euclidean_plane.gif
https://commons.wikimedia.org/wiki/File:Cauchy-Schwarz_inequation_in_Euclidean_plane.gif

Cauchy-Schwartz
ooooe

Cosine Distance

Large-magnitude vectors have a
tendency to swamp the training
criterion for a neural net. It's
often useful to explicitly ignore
the magnitude of the vector, and
to only minimize the angle
between two vectors on the

(N — 1)-dimensional hypersphere.

This is done by minimizing the
cosine distance,

cosd(x,y) =1 — cos(x, y)

Which is equivalent to
maximizing the cosine
similarity, X" y.

cos ¢ = <X, ¥> vy

CC-SA 4.0,
https://commons.wikimedia.org/wiki/File:

Cauchy-Schwarz_inequation_in_Euclidean_plane.gif

https://commons.wikimedia.org/wiki/File:Cauchy-Schwarz_inequation_in_Euclidean_plane.gif
https://commons.wikimedia.org/wiki/File:Cauchy-Schwarz_inequation_in_Euclidean_plane.gif

Smart PCA
°

Outline

© Smart PCA

Smart PCA
®000

PCA and Smart PCA

Consider trying to find a set of vectors, wy (1 < k < K), in order

to minimize p
MSE = E [Hx = hkwk||2] ,
k=1

where expectation is over the training dataset. The minimum-MSE
solution has orthogonal vectors, and therefore hy = % is the
minimum-MSE weight.

@ The MMSE solution can be computed using principal

components analysis (PCA).

@ The MMSE solution can also be computed using an
autoencoder neural network. If K is much less than the vector
dimension, the autoencoder computation is faster, so this is
called “smart PCA" (SPCA).

Smart PCA
0®00

Consider a training database,

{x1,...,Xxn}. An autoencoder
ENCODER [--=--=-------- ,
computes ettt oo , |
. |) |
hik = X" wi, . ol /) -
[T ! 1 > !
> 1 1 © 1
and 1 3 ! I =
E - HESH * E8
a ! o
K [: 1 8 :
- 1
/ 1
X; = E h,'7ka = Wh | X ! |
1
k=1 ' | . .
1 1 1 1
. U iy 1
then trains W = [wy,...,wx]to ________ 777 | DECODER
minimize
CC-SA 4.0,

https://commons.wikimedia.org/wiki/File:

Autoencoder_schema.png

1 n
MSE = =) " |lx; — x{|]?
S ”,-:1Hx xi|

https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png
https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png

Both PCA and SPCA choose
unit-length vectors,

W = [wy, ..., wg] in order to
minimize

MSE = E [||x — Wh|?],

therefore both SPCA and PCA
choose vectors that span the
same vector subspace. SPCA
does not decide the order of the
vectors, or their sign, so SPCA
can produce a vector subspace
that's a rotated version of the
one chosen by PCA.

Smart PCA
fe7e] Yo)

PCA Linear Autoencoder

Plot of the first two Principal
Components (left) and the two
hidden units’ values of a Linear
Autoencoder (right) applied to
the Fashion MNIST dataset. The
two models being both linear
learn to span the same subspace.
CC-SA 4.0,
https://upload.wikimedia.org/wikipedia/commons/

0/0b/PCA_vs_Linear_Autoencoder.png

https://upload.wikimedia.org/wikipedia/commons/0/0b/PCA_vs_Linear_Autoencoder.png
https://upload.wikimedia.org/wikipedia/commons/0/0b/PCA_vs_Linear_Autoencoder.png

Smart PCA
ocooe

PCA and Smart PCA

The training criterion for both PCA and SPCA is
MSE = E [||x — Wh|]
= E [[Ix|2+ | Wh ~ 2x" wh|
So minimizing the MSE is the same as maximizing the dot product

between the hidden vector, h, and the transformed input vector,
W T x. This is a kind of dot-product similarity measure.

Attention
°

Outline

© Attention

Attention
©000000000

ASR and Machine Translation (MT): Similarities and

Differences

The idea of an “attention-weighted summary” was proposed and
refined from 2012 to 2017 in a series of papers, some of which
were automatic speech recognition (ASR) papers, and some of
which were neural machine translation (MT) papers.

’ ‘ Input, Output Lengths ‘ Input, Output Sequence Order

ASR | Different Same
MT | Different Different

Attention
0®00000000

Encoder-Decoder Neural Nets

Decoder

Ve

Cho et al., “Learning Phrase
Representations using RNN
Encoder—Decoder for Statistical
Machine Translation” (Sep.
2014) proposed a solution:

C
@ RNN “encodes” all of the
input to a summary vector,
X1 X5 Xt

c, then

@ RNN *“decodes” c in order Encoder
to produce the output.

Cho, Merriénboer, Gulcehre, Bahdenau, Bougares,
Schwenk & Bengio, Learning Phrase Representations
using RNN Encoder—Decoder for Statistical Machine

Translation, Fig-1.

Attention
00®0000000

Encoder-Decoder Neural Nets

Cho et al., “On the

Properties Of Neural La croissance économique a ralenti ces derniéres années .
Machine Translation:

\ Decode /
Encoder—Decoder (21,22, ... ,24]
Approaches” (Oct. 2014) /

Encode
proposed that the encoder
summary didn’t need to be

a S|ng|e VeCtOI’, |t COU|C| be Cho, Merriénboer, Bahdenau & Bengio, On the Properties of Neural
a Seq uence Of vectors. Machine Translation: Encoder-Decoder Approaches, Fig. 3.

Economic growth has slowed down in recent years .

Attention
000®000000

Encoder-Decoder: Too Much Information?

@ Encoder-decoder models beat the state of the art in some
tasks (usually tasks with a lot of data), but had a fatal flaw.

@ If the encoder creates a small summary, then it accidentally
throws away important information, because it doesn't always
know which information is important.

o If the encoder creates a large summary, then the decoder
doesn’t know which data to use for any given computation, so
training takes longer, and sometimes fails.

Attention
[e]e]eleY Tolelelele)

Attention

In December 2014, Chorowski et al. proposed a new type of
encoder-decoder algorithm, based on “attention.”
@ The i*! time step in the Decoder is computed based on an
attention-weighted summary of the inputs:

L
S = Recurrency Si—1, Z Ck,"jhj
j=1
@ The Attention is a kind of probability mass (sums to one)
over the different input time steps, 1 < j < L:

L

exp(e,-J)

Qjj = 3, Qjj = 1
> i exp(ei) ;

@ The Attention Score is a special neural net that measures
the similarity between input vector h; and output vector s;_1:

eij = Score(s;_1, h))

Attention
00000®0000

Attention

@ S 1 and hJ'
determine «; ;
@ S; is
determined by
L .
Zj:l ML

Chorowski, Bahdanau, Serdyk, Cho & Bengio, Attention-Based Models for

Speech Recognition, Fig. 1

Attention
000000®000

When should you pay attention?

@ The key idea of attention is that there is some sort of
similarity score, e; ; = Similarity(s;_1, h;), so that you can
compute attention weights according to

exp(eij)

L
Zj:l exp(ei,j)

@ Raw inputs (speech) and raw outputs (text) are not inherently
similar.

Qjj =

@ There needs to be a network that converts the inputs into
some hidden vectors, h; and s;_1, that are similar if and only
if «j j should be large.

Cheng, Dong and Lapata,
“Long Short-Term

Memory-Networks for
Machine Reading,” m

proposed using a new kind
of attention called =

| | attention |]

Intra_attentlon or encoder hidden decoder hidden
state tape state tape

“self-attention” to

compute —
. intra .‘ encoder intra 4 decoder
[} hj fro m t h e n p u ts, attention memory tape attention memory tape

and
@ s;_; from the
preceding outputs, so encoder decoder
that Cheng, Dong & Lapata, “Long Short-Term Memory-Networks for
@ inter-attention will Machine Reading,” 2016, Fig. 3(a)

correctly measure
Similarity(sj_1, hj).

Attention
0000000080

Intra-Attention

An RNN with intra-attention computes the RNN state vector h; as
the attention-weighted summary of past RNN state vectors:

t—1
h, = E Oét,ihi,
i=1
where the weights, o, are softmax normalized:

ay,j = softmax(e i),

based on similarities computed between h;, I~1t_1, and the input
vector Xx;:

e = weT tanh <Whh,- + Wix: + W;,I~1t_1>

Attention
000000000e

@ The representation of

each word (|n red) is The FBI is chasing a criminal on the run .
e FBI is chasing a criminal on the run .
computed based

The BBI is chasing a criminal on the run .
on... The FBI 8 chasing a criminal on the run .

@ an attention—weighted The FBI is chasing a criminal on the run.

The FBI is chasing a criminal on the run.
summary of all

The FBI is chasing a criminal on the run.

previous words The FBI i chasing a criminal em the run.
(attent|on weights in The BBI is chasing @ criminal em the run.
blu e) . The FBI is chasing a criminal on the run .

@ Thus, the meaning of
a word depends on its
context.

Cheng, Dong & Lapata, “Long Short-Term Memory-Networks for

Machine Reading,” 2016, Fig. 1

Transformer
°

Outline

@ Transformer

Transformer
©0000000

Transformer: Scaled Transformed Dot-Product Attention

t

MatMul
f 4
SoftMax
A
Mask (opt.)

A

Scale

1
MatMul

t ot

Q KV

Vaswani et al., 2017, Figure 2(a)

>

Transformer
0®000000

The Data Matrices

qlT k1T V1T
q; kT v,

o g; € N% is a query vector
° ki c R is a key vector
o vj € R% is a value vector

Transformer
00®00000

The Dot-Product

ok - alk,
QK™ =1 .
g ki -+ q)k,
is the matrix whose (i,)" element is the dot product between q;
and k;.

Transformer
000®0000

The Scaled Dot-Product

Suppose that g; and k; are each normalized so that they are
independent Gaussian random variables with zero mean and unit
variance. Then

dy
Q,'Tkj = Z qi kit
t=1
is a zero-mean random variable with variance d,. We can
re-normalize it (to zero mean and unit variance) by computing
qiTkj _]‘i i k
@ - m — ql,t \,t

Transformer
0000®000

Scaled Dot-Product Attention

We assume that g; and k; have been transformed by some
preceding neural net, so q,-Tkj is large if and only if they should be
considered similar. Therefore the similarity score is
1
eij = —==a; k;

Vi

and the corresponding attention weight is

exp(e,-J)
> exp(ei)

o j = softmax(e;j) =

Q11 Q1gp

)

= softmax <QKT)
Vi

Qp1 -+ Qpp

b

Transformer
00000800

Scaled Dot-Product Attention

The context summary vector is then

n
cla) =) aijy
Jj=1
If we stack these up into a matrix, we get

C(ql)T QKT 1
= softmax <\/d>k> ET

C(qn)T L

Transformer
00000080

Masking

If gi, kj and v; are decoder vectors being produced autoregressively
(e.g., decoder self-attention), then c¢(q;) can only depend on
values of v; for j < i:

i—1
c(ar) =Y iy,
j=1

This can be done by setting a;; = 0 for j > i. In turn, this can be
done by masking the similarity scores as follows:

1 7
&= g ki + mij,

where

Transformer
0000000e

Scaled Dot-Product Attention

t

MatMul
f A
SoftMax
4
Attention(Q, K, V) Mask (opt.)
B QK™ 4
= softmax < NG) |74 Sl
1
MatMul
Q K V

Vaswani et al.; 2017, Figure 2(a)

Multi-Head Attention
°

Outline

© Multi-Head Attention

Multi-Head Attention
000

Multi-Head Attention: Why

@ Dot-product attention assumes that g; and k; have already
been transformed by some neural network so that q,-TkJ- is
large if and only if v; is an important part of the context.

@ What if you need several types of context? One type tells you
about speaker ID, one type tells you about dialect, one type
tells you the topic of conversation, etc.

@ Multi-Head Attention computes many different types of g;

vectors, and many different types of k; vectors, so that
different types of context may be accumulated in parallel.

Multi-Head Attention

(o] Je]

Multi-Head Attention

Linear

Concat

L
Scaled Dot-Product J& N
Attention >
| | |

[T.inear]_][?.inear]_][l{_inear]]
¥y

- 7

Vv K Q

Vaswani et al., 2017, Figure 2(b)

Multi-Head Attention
ooe

Multi-Head Attention

head; = Attention (QW,.Q, KWK, vw,.‘/>

W (KWK\T
= softmax QW (KW) vwY,
Vdk

where the weight matrices VVI-Q, VV,-K, and VV,-V, forl1 < i< h,
are learned matrices summarizing the type of context accumulated
in each head. Then

MultiHead(Q, K, V) = Concat(heads, ..., head,) WO,

where WO is a final transformation that can, e.g., combine
information from different heads in a learned manner.

Conclusion
°

Outline

@ Conclusions

Conclusion
®000

Why Self-Attention?

@ Encoder-decoder attention is well-established, but the
transformations that compute g; and k; can be (1)
convolutional, (2) recurrent, or (3) self-attention. When is
self-attention the best approach?

@ Recurrent networks have to propagate information from the
start of the sequence to the end (path length=n). Information
can get forgotten.

@ Convolutional networks are much quicker, but need to learn
weights covering the entire width of the kernel (k). For
reasons of data-efficient learning, most systems therefore use
small k.

@ Self-attention is as fast as convolution, without pre-trained
kernel weights. Instead, the attention weights are based on
similarity, which is computed using a more efficient network.

Therefore, the “kernel width” for self-attention is usually
k=n.

Conclusion
oeoo

Why Self-Attention?

Layer Type Complexity/Layer Path Length

Recurrent 0{nd?} O{n}
Convolutional O{knd?} O{log,(n)}
Self-Attention O{n*d} O{1}

@ n = sequence length
@ d = representation dimension

@ k = kernel dimension

Conclusion
ooeo

— Trafo
Trafo+SpecAug

— LSTM

—— LSTM+SpecAug

Train

@ Because of the shorter

pathlength, Transformer 107
trains faster than LSTM. 102 |

@ Transformer sometimes 100 v
overtrains (time alignment is B
too flexible). £ . I

@ Overtraining can be
compensated by data 'j / —N
augmentation, giving it 5

exactly the same accuracy Epoch
as LSTM . Zeyer et al., “A Comparison of Transformer and LSTM

Encoder Decoder Models for ASR,” (c) IEEE, 2019

Conclusion
oooe

Summary

. QK™
Attention(Q, K, V') = softmax v
Vdk

head; — Attention (QW,.Q, KWK, VW,-V>

MultiHead(Q, K, V) = Concat(heads, ..., head,) WO,

	The Cauchy-Schwartz Inequality and Cosine Distance
	Smart PCA
	Attention
	Transformer
	Multi-Head Attention
	Conclusions

