
Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Lecture 21: Transformer

Mark Hasegawa-Johnson
These slides are in the public domain

University of Illinois

ECE 417: Multimedia Signal Processing

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

1 The Cauchy-Schwartz Inequality and Cosine Distance

2 Smart PCA

3 Attention

4 Transformer

5 Multi-Head Attention

6 Conclusions

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Outline

1 The Cauchy-Schwartz Inequality and Cosine Distance

2 Smart PCA

3 Attention

4 Transformer

5 Multi-Head Attention

6 Conclusions

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

The Cauchy-Schwartz Inequality

The Cauchy-Schwart inequality says that, for any two vectors
x = [x1, . . . , xN]T and y = [y1, . . . , yN]T ,

|xTy | ≤ ‖x‖‖y‖

If we define the unit vectors as follows,

x̂ =
x
‖x‖

, ŷ =
y
‖y‖

,

then the Cauchy-Schwartz inequality says that

−1 ≤ x̂T ŷ ≤ 1

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

The Cauchy-Schwartz Inequality: Proof

Suppose we have a particular x , and we want to:

choose y1, . . . , yN in order to maximize the dot product,

xTy =
N∑
i=1

xiyi

subject to the constraint that the length of y is fixed, say,

1 =
N∑
i=1

y2i

This can be done by choosing y1, . . . , yN to maximize the following
Lagrangian:

L(y) =
N∑
i=1

xiyi + λ

(
N∑
i=1

y2i − 1

)

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

The Cauchy-Schwartz Inequality: Proof

L(y) =
N∑
i=1

xiyi + λ

(
N∑
i=1

y2i − 1

)
Setting ∂L

∂yi
= 0 yields:

yi = − xi
2λ
,

There are two values of λ that satisfy the constraint ‖y‖ = 1.
They are:

yi = ± xi
‖x‖

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Cosine Distance

The Cauchy-Schwartz inequality
can be written as:

−1 ≤ x̂T ŷ ≤ 1,

where x̂ = x
‖x‖ and ŷ = y

‖y‖ .
This is an N-dimensional
generalization of the 2D
geometric interpretation of the
dot product:

x̂T ŷ = cosφ
CC-SA 4.0, https://commons.
wikimedia.org/wiki/File:

Cauchy-Schwarz_inequation_

in_Euclidean_plane.gif

https://commons.wikimedia.org/wiki/File:Cauchy-Schwarz_inequation_in_Euclidean_plane.gif
https://commons.wikimedia.org/wiki/File:Cauchy-Schwarz_inequation_in_Euclidean_plane.gif
https://commons.wikimedia.org/wiki/File:Cauchy-Schwarz_inequation_in_Euclidean_plane.gif
https://commons.wikimedia.org/wiki/File:Cauchy-Schwarz_inequation_in_Euclidean_plane.gif

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Cosine Distance

Large-magnitude vectors have a
tendency to swamp the training
criterion for a neural net. It’s
often useful to explicitly ignore
the magnitude of the vector, and
to only minimize the angle
between two vectors on the
(N − 1)-dimensional hypersphere.
This is done by minimizing the
cosine distance,

cosd(x , y) = 1− cos(x , y)

= 1− x̂T ŷ

Which is equivalent to
maximizing the cosine
similarity, x̂T ŷ .

CC-SA 4.0,

https://commons.wikimedia.org/wiki/File:

Cauchy-Schwarz_inequation_in_Euclidean_plane.gif

https://commons.wikimedia.org/wiki/File:Cauchy-Schwarz_inequation_in_Euclidean_plane.gif
https://commons.wikimedia.org/wiki/File:Cauchy-Schwarz_inequation_in_Euclidean_plane.gif

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Outline

1 The Cauchy-Schwartz Inequality and Cosine Distance

2 Smart PCA

3 Attention

4 Transformer

5 Multi-Head Attention

6 Conclusions

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

PCA and Smart PCA

Consider trying to find a set of vectors, wk (1 ≤ k ≤ K), in order
to minimize

MSE = E

[
‖x −

K∑
k=1

hkwk‖2
]
,

where expectation is over the training dataset. The minimum-MSE

solution has orthogonal vectors, and therefore hk =
wT

k x
‖wk‖2

is the

minimum-MSE weight.

The MMSE solution can be computed using principal
components analysis (PCA).

The MMSE solution can also be computed using an
autoencoder neural network. If K is much less than the vector
dimension, the autoencoder computation is faster, so this is
called “smart PCA” (SPCA).

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Consider a training database,
{x1, . . . , xn}. An autoencoder
computes

hi ,k = xT
i wk ,

and

x ′i =
K∑

k=1

hi ,kwk = Wh

then trains W = [w1, . . . ,wK] to
minimize

MSE =
1

n

n∑
i=1

‖xi − x ′i ‖2
CC-SA 4.0,

https://commons.wikimedia.org/wiki/File:

Autoencoder_schema.png

https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png
https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Both PCA and SPCA choose
unit-length vectors,
W = [w1, . . . ,wK] in order to
minimize

MSE = E
[
‖x −Wh‖2

]
,

therefore both SPCA and PCA
choose vectors that span the
same vector subspace. SPCA
does not decide the order of the
vectors, or their sign, so SPCA
can produce a vector subspace
that’s a rotated version of the
one chosen by PCA.

Plot of the first two Principal
Components (left) and the two
hidden units’ values of a Linear
Autoencoder (right) applied to

the Fashion MNIST dataset. The
two models being both linear

learn to span the same subspace.
CC-SA 4.0,

https://upload.wikimedia.org/wikipedia/commons/

0/0b/PCA_vs_Linear_Autoencoder.png

https://upload.wikimedia.org/wikipedia/commons/0/0b/PCA_vs_Linear_Autoencoder.png
https://upload.wikimedia.org/wikipedia/commons/0/0b/PCA_vs_Linear_Autoencoder.png

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

PCA and Smart PCA

The training criterion for both PCA and SPCA is

MSE = E
[
‖x −Wh‖2

]
= E

[
‖x‖2 + ‖Wh‖2 − 2xTWh

]
So minimizing the MSE is the same as maximizing the dot product
between the hidden vector, h, and the transformed input vector,
W Tx . This is a kind of dot-product similarity measure.

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Outline

1 The Cauchy-Schwartz Inequality and Cosine Distance

2 Smart PCA

3 Attention

4 Transformer

5 Multi-Head Attention

6 Conclusions

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

ASR and Machine Translation (MT): Similarities and
Differences

The idea of an “attention-weighted summary” was proposed and
refined from 2012 to 2017 in a series of papers, some of which
were automatic speech recognition (ASR) papers, and some of
which were neural machine translation (MT) papers.

Input, Output Lengths Input, Output Sequence Order

ASR Different Same

MT Different Different

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Encoder-Decoder Neural Nets

Cho et al., “Learning Phrase
Representations using RNN
Encoder–Decoder for Statistical
Machine Translation” (Sep.
2014) proposed a solution:

RNN “encodes” all of the
input to a summary vector,
c , then

RNN “decodes” c in order
to produce the output.

Cho, Merriënboer, Gulcehre, Bahdenau, Bougares,

Schwenk & Bengio, Learning Phrase Representations

using RNN Encoder–Decoder for Statistical Machine

Translation, Fig. 1.

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Encoder-Decoder Neural Nets

Cho et al., “On the
Properties of Neural
Machine Translation:
Encoder–Decoder
Approaches” (Oct. 2014)
proposed that the encoder
summary didn’t need to be
a single vector, it could be
a sequence of vectors.

Cho, Merriënboer, Bahdenau & Bengio, On the Properties of Neural

Machine Translation: Encoder–Decoder Approaches, Fig. 3.

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Encoder-Decoder: Too Much Information?

Encoder-decoder models beat the state of the art in some
tasks (usually tasks with a lot of data), but had a fatal flaw.

If the encoder creates a small summary, then it accidentally
throws away important information, because it doesn’t always
know which information is important.

If the encoder creates a large summary, then the decoder
doesn’t know which data to use for any given computation, so
training takes longer, and sometimes fails.

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Attention

In December 2014, Chorowski et al. proposed a new type of
encoder-decoder algorithm, based on “attention.”

The i th time step in the Decoder is computed based on an
attention-weighted summary of the inputs:

si = Recurrency

si−1,
L∑

j=1

αi ,jhj


The Attention is a kind of probability mass (sums to one)
over the different input time steps, 1 ≤ j ≤ L:

αi ,j =
exp(ei ,j)∑L
j=1 exp(ei ,j)

,

L∑
j=1

αi ,j = 1

The Attention Score is a special neural net that measures
the similarity between input vector hj and output vector si−1:

ei ,j = Score(si−1,hj)

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Attention

si−1 and hj

determine αi ,j

si is
determined by∑L

j=1 αi ,jhj

Chorowski, Bahdanau, Serdyk, Cho & Bengio, Attention-Based Models for

Speech Recognition, Fig. 1

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

When should you pay attention?

The key idea of attention is that there is some sort of
similarity score, ei ,j = Similarity(si−1,hj), so that you can
compute attention weights according to

αi ,j =
exp(ei ,j)∑L
j=1 exp(ei ,j)

Raw inputs (speech) and raw outputs (text) are not inherently
similar.

There needs to be a network that converts the inputs into
some hidden vectors, hj and si−1, that are similar if and only
if αi ,j should be large.

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Cheng, Dong and Lapata,
“Long Short-Term
Memory-Networks for
Machine Reading,”
proposed using a new kind
of attention called
“intra-attention” or
“self-attention” to
compute

hj from the inputs,
and

si−1 from the
preceding outputs, so
that

inter-attention will
correctly measure
Similarity(si−1,hj).

Cheng, Dong & Lapata, “Long Short-Term Memory-Networks for

Machine Reading,” 2016, Fig. 3(a)

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Intra-Attention

An RNN with intra-attention computes the RNN state vector h̃t as
the attention-weighted summary of past RNN state vectors:

h̃t =
t−1∑
i=1

αt,ihi ,

where the weights, αt,i , are softmax normalized:

αt,i = softmax(et,i),

based on similarities computed between hi , h̃t−1, and the input
vector xt :

et,i = wT
e tanh

(
Whhi + Wxxt + Wh̃h̃t−1

)

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

The representation of
each word (in red) is
computed based
on. . .

an attention-weighted
summary of all
previous words
(attention weights in
blue).

Thus, the meaning of
a word depends on its
context.

Cheng, Dong & Lapata, “Long Short-Term Memory-Networks for

Machine Reading,” 2016, Fig. 1

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Outline

1 The Cauchy-Schwartz Inequality and Cosine Distance

2 Smart PCA

3 Attention

4 Transformer

5 Multi-Head Attention

6 Conclusions

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Transformer: Scaled Transformed Dot-Product Attention

Vaswani et al., 2017, Figure 2(a)

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

The Data Matrices

Q =

 qT
1
...

qT
n

 , K =

 kT
1
...

kT
n

 , V =

 vT
1
...

vT
n


qi ∈ <dk is a query vector

kj ∈ <dk is a key vector

vj ∈ <dv is a value vector

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

The Dot-Product

QKT =

 qT
1 k1 · · · qT

1 kn
...

. . .
...

qT
n k1 · · · qT

n kn

 ,
is the matrix whose (i , j)th element is the dot product between qi

and kj .

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

The Scaled Dot-Product

Suppose that qi and kj are each normalized so that they are
independent Gaussian random variables with zero mean and unit
variance. Then

qT
i kj =

dk∑
t=1

qi ,tkj ,t

is a zero-mean random variable with variance dk . We can
re-normalize it (to zero mean and unit variance) by computing

qT
i kj√
dk

=
1√
dk

dk∑
t=1

qi ,tkj ,t

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Scaled Dot-Product Attention

We assume that qi and kj have been transformed by some
preceding neural net, so qT

i kj is large if and only if they should be
considered similar. Therefore the similarity score is

ei ,j =
1√
dk

qT
i kj ,

and the corresponding attention weight is

αi ,j = softmax(ei ,j) =
exp(ei ,j)∑n
j=1 exp(ei ,j) α1,1 · · · α1,n

...
. . .

...
αn,1 · · · αn,n

 = softmax

(
QKT

√
dk

)

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Scaled Dot-Product Attention

The context summary vector is then

c(qi) =
n∑

j=1

αi ,jvj

If we stack these up into a matrix, we get c(q1)T

...
c(qn)T

 = softmax

(
QKT

√
dk

) vT
1
...

vT
n



Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Masking

If qi , kj and vj are decoder vectors being produced autoregressively
(e.g., decoder self-attention), then c(qi) can only depend on
values of vj for j < i :

c(qi) =
i−1∑
j=1

αi ,jvj

This can be done by setting αi ,j = 0 for j ≥ i . In turn, this can be
done by masking the similarity scores as follows:

ei ,j =
1√
dk

qT
i kj + mi ,j ,

where

mi ,j =

{
0 j < i
−∞ j ≥ i

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Scaled Dot-Product Attention

Attention(Q,K ,V)

= softmax

(
QKT

√
dk

)
V

Vaswani et al., 2017, Figure 2(a)

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Outline

1 The Cauchy-Schwartz Inequality and Cosine Distance

2 Smart PCA

3 Attention

4 Transformer

5 Multi-Head Attention

6 Conclusions

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Multi-Head Attention: Why

Dot-product attention assumes that qi and kj have already
been transformed by some neural network so that qT

i kj is
large if and only if vj is an important part of the context.

What if you need several types of context? One type tells you
about speaker ID, one type tells you about dialect, one type
tells you the topic of conversation, etc.

Multi-Head Attention computes many different types of qi

vectors, and many different types of kj vectors, so that
different types of context may be accumulated in parallel.

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Multi-Head Attention

Vaswani et al., 2017, Figure 2(b)

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Multi-Head Attention

headi = Attention
(
QWQ

i ,KW K
i ,VW V

i

)
= softmax

(
QWQ

i (KW K
i)T√

dk

)
VW V

i ,

where the weight matrices WQ
i , W K

i , and W V
i , for 1 ≤ i ≤ h,

are learned matrices summarizing the type of context accumulated
in each head. Then

MultiHead(Q,K ,V) = Concat(head1, . . . , headh)WO ,

where WO is a final transformation that can, e.g., combine
information from different heads in a learned manner.

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Outline

1 The Cauchy-Schwartz Inequality and Cosine Distance

2 Smart PCA

3 Attention

4 Transformer

5 Multi-Head Attention

6 Conclusions

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Why Self-Attention?

Encoder-decoder attention is well-established, but the
transformations that compute qi and kj can be (1)
convolutional, (2) recurrent, or (3) self-attention. When is
self-attention the best approach?

Recurrent networks have to propagate information from the
start of the sequence to the end (path length=n). Information
can get forgotten.

Convolutional networks are much quicker, but need to learn
weights covering the entire width of the kernel (k). For
reasons of data-efficient learning, most systems therefore use
small k .

Self-attention is as fast as convolution, without pre-trained
kernel weights. Instead, the attention weights are based on
similarity, which is computed using a more efficient network.
Therefore, the “kernel width” for self-attention is usually
k = n.

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Why Self-Attention?

Layer Type Complexity/Layer Path Length

Recurrent O{nd2} O{n}
Convolutional O{knd2} O{logk(n)}
Self-Attention O{n2d} O{1}

n = sequence length

d = representation dimension

k = kernel dimension

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Because of the shorter
pathlength, Transformer
trains faster than LSTM.

Transformer sometimes
overtrains (time alignment is
too flexible).

Overtraining can be
compensated by data
augmentation, giving it
exactly the same accuracy
as LSTM. Zeyer et al., “A Comparison of Transformer and LSTM

Encoder Decoder Models for ASR,” (c) IEEE, 2019

Cauchy-Schwartz Smart PCA Attention Transformer Multi-Head Attention Conclusion

Summary

Attention(Q,K ,V) = softmax

(
QKT

√
dk

)
V

headi = Attention
(
QWQ

i ,KW K
i ,VW V

i

)
MultiHead(Q,K ,V) = Concat(head1, . . . , headh)WO ,

	The Cauchy-Schwartz Inequality and Cosine Distance
	Smart PCA
	Attention
	Transformer
	Multi-Head Attention
	Conclusions

