
Autoencoders Voice Conversion AutoVC Conclusions

Lecture 20: AutoVC: Zero-Shot Voice Conversion
using Autoencoder Loss

Mark Hasegawa-Johnson
These slides are in the public domain

University of Illinois

ECE 417: Multimedia Signal Processing



Autoencoders Voice Conversion AutoVC Conclusions

1 Autoencoders

2 Voice Conversion

3 AutoVC

4 Conclusions



Autoencoders Voice Conversion AutoVC Conclusions

Outline

1 Autoencoders

2 Voice Conversion

3 AutoVC

4 Conclusions



Autoencoders Voice Conversion AutoVC Conclusions

Autoencoder

A two-layer network is a network
with two matrix multiplications,
e.g.,

h = g (W1x)

x ′ = W2h

An autoencoder is a neural net
trained to minimize the difference
between its output and its input:

L = ‖x ′ − x‖2
https://commons.wikimedia.

org/wiki/File:

Autoencoder_schema.png

https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png
https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png
https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png


Autoencoders Voice Conversion AutoVC Conclusions

Dimensionality Reduction

Notice that if len(h) = len(x),
then there is a trivial solution:

h = Ix = x
x ′ = Ih = x

L = ‖x ′ − x‖2 = 0

For this reason, an autoencoder
is only interesting if h is limited
in some way. Most often, it is
because len(h) < len(x).

https://commons.wikimedia.

org/wiki/File:

Autoencoder_schema.png

https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png
https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png
https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png


Autoencoders Voice Conversion AutoVC Conclusions

Dimensionality reduction

The goal of the autoencoder is to
learn a vector h that is shorter
than x , but contains most of the
same information.

https://commons.wikimedia.

org/wiki/File:

Autoencoder_schema.png

https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png
https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png
https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png


Autoencoders Voice Conversion AutoVC Conclusions

Linear Autoencoder = Smart PCA

Suppose that the hidden layer is
linear, len(h) = K , len(x) = D,
and suppose that
W1 = W T

2 = W T , i.e.,

h = g
(
W Tx

)
x ′ = Wh

L = ‖x ′ − x‖2

In order to minimize L, the
columns of W must span the
same space as the first K
principal components. They
don’t need to be orthogonal, but
they must span the space.

https://commons.wikimedia.

org/wiki/File:

Change_of_basis_22.svg

https://commons.wikimedia.org/wiki/File:Change_of_basis_22.svg
https://commons.wikimedia.org/wiki/File:Change_of_basis_22.svg
https://commons.wikimedia.org/wiki/File:Change_of_basis_22.svg


Autoencoders Voice Conversion AutoVC Conclusions

Linear Autoencoder = Smart PCA

If x ∈ <D , then regular PCA finds the
eigenvectors of the covariance matrix: an
O{D3} operation.

Smart PCA is O{TNKD}, where K is the
number of principal components you want
to find, T is the number of training
epochs, and N is the number of training
tokens.

If K � D (e.g., you have 100,000
dimensions but you only want 100
principal components), smart PCA can be
faster than regular PCA.

https://commons.

wikimedia.org/

wiki/File:

Autoencoder_

schema.png

https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png
https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png
https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png
https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png
https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png


Autoencoders Voice Conversion AutoVC Conclusions

Types of autoencoders

A linear autoencoder finds the first K principal components.
This architecture is sometimes called smart PCA, because it is
faster than PCA if K � D.

A sparse autoencoder can represent data that are drawn
from a sparse manifold, which is the union of two or more
hyperplanes.

A deep autoencoder can represent data that are drawn from
a nonlinear manifold, which is a curved lower-dimensional
space embedded in a higher dimensional space.

An LSTM autoencoder represents a sequence [x1, . . . , xT ]
using a shorter sequence [h1, . . . ,hU ] (U < T ).



Autoencoders Voice Conversion AutoVC Conclusions

Sparse Manifold

A sparse manifold is the union of
two or more hyperplanes.
For example, suppose that we
have a set of 3d vectors, all of
which are drawn from one of the
two planes shown at right. How
can we represent that?

https://commons.wikimedia.

org/wiki/File:

PlaneIntersection.png

https://commons.wikimedia.org/wiki/File:PlaneIntersection.png
https://commons.wikimedia.org/wiki/File:PlaneIntersection.png
https://commons.wikimedia.org/wiki/File:PlaneIntersection.png


Autoencoders Voice Conversion AutoVC Conclusions

Sparse Autoencoder/Sparse PCA

A sparse autoencoder is an autoencoder
in which len(h) ≥ len(x), but only the
K < len(x) largest elements of h are
allowed to be nonzero.

For example, in the image at right, only
the two largest elements of h are nonzero;
the others are zeroed out.

The result is that x ′ = x if x is on a plane
spanned by any two of the columns of W .

https://commons.

wikimedia.org/

wiki/File:

Autoencoder_

sparso.png

https://commons.wikimedia.org/wiki/File:Autoencoder_sparso.png
https://commons.wikimedia.org/wiki/File:Autoencoder_sparso.png
https://commons.wikimedia.org/wiki/File:Autoencoder_sparso.png
https://commons.wikimedia.org/wiki/File:Autoencoder_sparso.png
https://commons.wikimedia.org/wiki/File:Autoencoder_sparso.png


Autoencoders Voice Conversion AutoVC Conclusions

Nonlinear Manifold

A nonlinear manifold is a curved
lower-dimensional surface
embedded in a
higher-dimensional vector space.
For example, the figure at right
shows a 2d manifold embedded
in a 3d vector space.

https://commons.wikimedia.

org/wiki/File:

Klein_bottle.svg

https://commons.wikimedia.org/wiki/File:Klein_bottle.svg
https://commons.wikimedia.org/wiki/File:Klein_bottle.svg
https://commons.wikimedia.org/wiki/File:Klein_bottle.svg


Autoencoders Voice Conversion AutoVC Conclusions

Deep Autoencoder

In a deep autoencoder, z = f (x)
is computed by a network with at
least two layers. Since a
two-layer network can compute
any function, therefore f (x) can
be any function.
The autoencoder loss can be zero
(x ′ = x) whenever x is on a
nonlinear manifold whose
dimension is less than or equal to
len(z).

https://commons.wikimedia.

org/wiki/File:

Autoencoder_structure.png

https://commons.wikimedia.org/wiki/File:Autoencoder_structure.png
https://commons.wikimedia.org/wiki/File:Autoencoder_structure.png
https://commons.wikimedia.org/wiki/File:Autoencoder_structure.png


Autoencoders Voice Conversion AutoVC Conclusions

LSTM Autoencoder

An LSTM autoencoder downsamples [x1, . . . , xT ] to [h1, . . . ,hU ],
then upsamples again to reconstruct x ′.

http://proceedings.mlr.press/v97/qian19c/qian19c.pdf

http://proceedings.mlr.press/v97/qian19c/qian19c.pdf


Autoencoders Voice Conversion AutoVC Conclusions

Outline

1 Autoencoders

2 Voice Conversion

3 AutoVC

4 Conclusions



Autoencoders Voice Conversion AutoVC Conclusions

Voice Conversion

Voice conversion transforms one person’s speech so that it
sounds like another person.

Usually we transform one spectrogram to another, then use
Griffin-Lim to reconstruct the waveform.



Autoencoders Voice Conversion AutoVC Conclusions

Fully Supervised Voice Conversion

In fully-supervised voice conversion, we have examples of the
source speaker and the target speaker saying the same
sentences.

A training example is (X1,X2) where X1 = [x1,1, . . . , x1,T ] is
a source spectrogram and X2 = [x2,1, . . . , x2,T ] is a target
spectrogram (of another speaker saying the same thing). The
first step is to approximately time-align them, e.g., by
zero-padding the shorter one.

Then we train a FCN, CNN, LSTM or other neural network
that computes x̂2,t = ft(X1), and train it to minimize

L =
1

2
‖X2 − X1→2‖2F =

1

2

T∑
t=1

‖x2,t − ft(X1)‖2



Autoencoders Voice Conversion AutoVC Conclusions

Many-to-Many Voice Conversion

A many-to-many voice converter is trained using a database
with many speakers.

The “content code” C1 = EC (X1) is a sequence of vectors
specifying what the generated utterance should say.

The “speaker code” S2 = ES(X2) specifies what the target
speakers sounds like, e.g., it might be an x-vector or d-vector.

The generated utterance X̂1→2 = D(C1,S2) is a spectrogram
with the same text content as X1, but sounds like the person
who said X2.



Autoencoders Voice Conversion AutoVC Conclusions

Many-to-Many VC Examples

https://auspicious3000.github.io/autovc-demo/

https://auspicious3000.github.io/autovc-demo/


Autoencoders Voice Conversion AutoVC Conclusions

How to train many-to-many voice conversion

Fully supervised: We have a database (like VCTK) in which
each speaker says the same things, so we can train using

L =
1

2
‖X2 − X1→2‖2F

StarGAN, AutoVC: We have a database of many speakers,
but they are not all saying the same things, so we need to use
some more clever training method.

https://datashare.ed.ac.uk/handle/10283/2651


Autoencoders Voice Conversion AutoVC Conclusions

Outline

1 Autoencoders

2 Voice Conversion

3 AutoVC

4 Conclusions



Autoencoders Voice Conversion AutoVC Conclusions

AutoVC: Zero-Shot Voice Conversion Using Autoencoder
Loss

The key idea of AutoVC is that we train the network using
self-reconstructions, X1→1 = D(C1,S1):

L =
1

2
‖X1 − X1→1‖2F

Then, during test time, we substitute in the speaker code for a
different speaker.



Autoencoders Voice Conversion AutoVC Conclusions

AutoVC: How to avoid C1 and S1 swapping information?

The problem that needs to be solved is: how do we make sure
that S1 encodes only information about the speaker, and C1

encodes only information about the content?

Suppose we pre-train the speaker encoder, S1, as a speaker
verification system. The task of speaker verification works
best if the utterance content has been normalized away, so
training in this way will ensure that S1 contains no content
information.

Now we just need to remove any speaker information from the
content code.



Autoencoders Voice Conversion AutoVC Conclusions

The “information bottleneck” idea



Autoencoders Voice Conversion AutoVC Conclusions

The “information bottleneck” idea

The input spectrogram is X = [x1, . . . , xT ], where each
spectral vector has a dimension of D.

The content code is C = [c1, . . . , cU ], where each content
codevector has a dimension of K .

The bottleneck factor, B, is the ratio of size(C )/size(X ), i.e.,

B =

(
K

D

)
×
(
U

T

)



Autoencoders Voice Conversion AutoVC Conclusions

The “information bottleneck” idea

B =

(
K

D

)
×
(
U

T

)

When B is too large, speaker information leaks into the
content code, so a converted speech file sounds like the source
speaker. We can measure this using a speaker verification
system: ask it, is this converted file the same as the source
speaker? If so, reduce B, and train again.

When B is too small, converted speech is unintelligible. We
can test this by measuring L = 1

2‖X1 − X1→1‖2. If L is too
large, increase B, and train again.

When B is just right, converted speech is intelligible, but
sounds nothing like the source speaker.



Autoencoders Voice Conversion AutoVC Conclusions

The AutoVC Architecture



Autoencoders Voice Conversion AutoVC Conclusions

Zero-Shot Voice Conversion

Since AutoVC represents the target speaker using a d-vector, it can
be used to convert speech into the voice of somebody it never
heard during training (“zero-shot voice conversion”). Here are
some examples:

https://auspicious3000.github.io/autovc-demo/

https://auspicious3000.github.io/autovc-demo/


Autoencoders Voice Conversion AutoVC Conclusions

Outline

1 Autoencoders

2 Voice Conversion

3 AutoVC

4 Conclusions



Autoencoders Voice Conversion AutoVC Conclusions

Conclusions: Autoencoders

An autoencoder converts x into h such that len(h) < len(x),
but h contains most of the information in x , in the sense that
it minimizes ‖x ′ − x‖2.

A linear autoencoder finds PCA. The linear autoencoder is
called “smart PCA” because, if len(h)� len(x), training the
neural net may be less computationally expensive than finding
the eigenvectors of the covariance.

A sparse autoencoder permits at most K elements of h to be
nonzero, and therefore achieves zero error if x is drawn from a
K -dimensional sparse manifold.

A deep autoencoder finds z = f (x), a nonlinear
transformation of x , and is able to represent x with nonzero
error if x is drawn from a len(z)-dimensional nonlinear
manifold.

An LSTM autoencoder can convert between sequences of
different lengths.



Autoencoders Voice Conversion AutoVC Conclusions

Conclusions: Voice Conversion

Supervised voice conversion assumes that you have paired
utterances, in which source and target speaker say the same
thing.

One-to-one: one source speaker, one target speaker.
Many-to-many: target speaker is specified by a speaker-ID
vector, e.g., a d-vector. System is trained to generate a voice
given its d-vector.

Zero-shot voice conversion assumes that the target speaker
was not part of the training dataset.

AutoVC is trained using self-conversion, i.e.,
X1→1 = D(C1,S1).
The speaker code is a speaker-ID system, e.g., d-vector.
If speaker verification can tell who the source speaker was,
then reduce the bottleneck dimension and try again.
If reconstruction error rate is too high, then increase the
bottleneck dimension and try again.


	Autoencoders
	Voice Conversion
	AutoVC
	Conclusions

