Lecture 19: Speaker Verification

Mark Hasegawa-Johnson
These slides are in the public domain

University of lllinois

ECE 417: Multimedia Signal Processing

I

1867

@ Speaker Verification
© i-vectors: Baum-Welch Supervector, Cosine Similarity
© x-vectors: Mean-Pooled CNN Supervector, PLDA Similarity

@ d-vectors: LSTM Supervector, Cosine Similarity

e Summary

Speaker Verification
°

Outline

@ Speaker Verification

Speaker Verification
®00

Speaker Verification: Problem Statement

@ Given: two test utterances, x1[n] and xz[n]

@ Decide: are they from the same speaker or not?

Speaker Verification
oeo

Why it's hard

@ Usually, the test speakers were not represented in your
training database.

@ Usually, you don’t know what they are saying.
e Usually, x1[n] and x[n] are saying different things.

e Usually, x1[n] and x[n] are of different lengths.

Speaker Verification
ooe

General Principles

e Convert xi[n] and x2[n] to spectrograms.

o Create very high-dimensional supervectors

M1 H2,1
51 = y 2=)
H1,K M2 K
where p; i is an estimate of the way in which speaker j says
phoneme k.

o Create intermediate-dimension embedding vectors w; = T Ts;,
where T is trained to optimize performance on a training
database.

@ Measure the similarity between wy and ws.

i-vectors
°

Outline

@ i-vectors: Baum-Welch Supervector, Cosine Similarity

i-vectors

9000000000

788 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING. VOL. 19, NO. 4, MAY 2011

Front-End Factor Analysis for Speaker Verification

Najim Dehak, Patrick J. Kenny, Réda Dehak, Pierre Dumouchel, and Pierre Ouellet

Abstract—This paper presents an extension of our previous
work which proposes a new speaker representation for speaker
veri ion. In this deling, a new | i ional speaker- and
channel-dependent space is defined using a simple factor analysis.
This space is named the total variability space because it models
both speaker and channel variabilities. Two speaker verification
systems are proposed which use this new representation. The first
system is a support vector machine-based system that uses the
cosine kernel to estimate the similarity between the input data.
The second system directly uses the cosine similarity as the final
decision score. We tested three channel compensation techniques
in the total variability space, which are within-class covariance
normalization (WCCN), linear discriminate analysis (LDA), and
nuisance attribute projection (NAP). We found that the best results
are obtained when LDA is followed by WCCN. We achieved an
equal error rate (EER) of 1.12% and MinDCF of 0.0094 using the
cosine distance scoring on the male English trials of the core con-
dition of the NIST 2008 Speaker Recognition Evaluation dataset.
We also obtained 4% absolute EER improvement for both-gender
trials on the 10 s-10 s condition compared to the classical joint
factor analysis scoring.

Index Terms—Cosine distance scoring, joint factor analysis

At the same time, the application of support vector machines
(SVMs) in GMM supervector space [5] yields interesting
results, especially when nuisance attribute projection (NAP) is
applied to deal with channel effects. In this approach, the kernel
used is based on a linear approximation of the Kullback-Leibler
(KL) distance between two GMMs. The speaker GMMs mean
supervectors were obtained by adapting the universal back-
ground model (UBM) mean supervector to speaker frames
using maximum a posteriori (MAP) adaptation [4].

In [6]. [7]. we proposed a new way of combining JFA and
SVMs for speaker verification. It consists in directly using the
speaker factors estimated with JFA as input to the SVM. We
tested several kernels and the best results were obtained using
the cosine kernel [6] when within-class covariance normaliza-
tion (WCCN) [8] is also used to compensate for residual channel
effects in the speaker factor space.

Recently [6], we carried out an experiment which proves
that channel factors estimated using JFA, which are supposed
to model only channel effects, also contain information about

i-vectors
0O®00000000

|dentity Vectors (i-vectors) Overview

o
2]
o

Convert waveform to MFCC vectors x;
Gaussian mixture model soft-assigns each x; to a phoneme.

Baum-Welch computes the differences between this speaker's
phonemes and the typical phonemes.

PCA reduces the supervector to an i-vector.

Measure similarity between two i-vectors using cosine
similarity.

i-vectors
0O®0000000

Mel Frequency Cepstral Coefficients

Mel-frequency spectrogram

0
0 06 12 18 24 3 36 42
Time

+0 dB

-10dB

-20 dB

-30 dB

-40 dB

-50 dB

-60 dB

-70 dB

-80 dB

e Compute STFT

o Convert to mel spectrogram
by nonlinearly resampling
the frequency axis, to get
semi-logarithmic frequencies

e Convert from mel
spectrogram to MFCC:
approximate the PCA of
each column using a discrete
cosine transform

i-vectors
000®000000

Gaussian Mixture Model

A Gaussian mixture model is like an HMM, but simpler:

Pr{ig: =i} = a;
Pr{xt|q: = i} = N (x¢|pi,)

The posterior probability of phoneme i at time t is therefore:

Pr{qg: =i, x:} _ aiN(Xt‘Hiy)
Zk Pr{qt = k, Xt} Zk akN(xt|Mk7 2k)

(i) = Pr{q: = ilx:} =

i-vectors
0000®00000

Soft Phoneme Segmentation using GMM

The image below shows hard phoneme alignment. A GMM

computes soft phoneme alignment, (i) = Pr{q; = i|x;}.
Printing, in the only...

4096

$p Jint1i n $ 1 ndrI ouvnl i s
Phone alignment times, iteration 1

i-vectors
00000@0000

GMM Supervector

A GMM supervector lists, for each phoneme, the differences
between the way in which this person produces the phoneme and
the way in which a typical person would produce the phoneme:

2o e (L) (xe—pa)

22 7e(1)
s= z
2 vt (N)(xe—pw)
> ve(N)
The dimension of this vector is very large. Typically each x; is a
40-dimensional MFCC vector, and typically there are 2048
Gaussians, for a total len(s) = 2048 x 40 = 81920.

i-vectors
000000e000

I-vector

@ The i-vector is a principal components analysis of the GMM
supervector:
_ 19T
w=G "T's

where the columns of T ¢ R81920x600 5re the eigenvectors of
the covariance of s, and G is a diagonal normalization matrix
related to the eigenvalues.

@ The dimension of w is chosen to be intermediate between the
dimension of s (81920) and the dimension of x; (40).
Typically, len(w) = 600. Although i-vector originally meant
“identity vector,” people sometimes also gloss it as
“intermediate vector.”

i-vectors
0000000e00

Similarity

@ The i-vector is a PCA of the . Haplogroup J - 37 STRs
differences between the s I
test speaker’s productions of 2
phonemes versus the typical ! Se |
production. How do we 0 " |2
evaluate similarity in this !

2

space? .

@ The problem: covariances 4

are diagonal in this space, s 2 e 2

but not uniform (example at https://commons.wikimedia.
right is chemical analysis, org/wiki/File:

but speaker verification PCA_of _Haplogroup_J_using_
looks similar). 37_STRs.png

https://commons.wikimedia.org/wiki/File:PCA_of_Haplogroup_J_using_37_STRs.png
https://commons.wikimedia.org/wiki/File:PCA_of_Haplogroup_J_using_37_STRs.png
https://commons.wikimedia.org/wiki/File:PCA_of_Haplogroup_J_using_37_STRs.png
https://commons.wikimedia.org/wiki/File:PCA_of_Haplogroup_J_using_37_STRs.png

i-vectors
0000000080

Similarity Measures

The original i-vector paper tested two similarity measures:

@ Directly threshold the cosine similarity:

WlTw2
y= 11 Twilwer > ?
0 otherwise

@ Train a binary SVM using the cosine similarity as the kernel

Both of these measures, applied to i-vectors, were tested against
joint factor analysis (JFA), the previous state of the art.

i-vector: Results

40

20

10

Miss probability (in %)

0.5

0.2

i-vectors
000000000e

0.1

!

1

1

Speaker Detection Performance

English : JFA
English : SVM
English: cosine

= = =ALL:JFA

ALL:SVM

= = = ALL: cosine

0.1 0

2

0.5

1

2

5

10

20

False Alarm probability (in %)

Xx-vectors
°

Outline

e x-vectors: Mean-Pooled CNN Supervector, PLDA Similarity

ectors
0000000

X-VECTORS: ROBUST DNN EMBEDDINGS FOR SPEAKER RECOGNITION

David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, Sanjeev Khudanpur

Center for Language and Speech Processing & Human Language Technology Center of Excellence
The Johns Hopkins University, Baltimore, MD 21218, USA

ABSTRACT

In this paper, we use data augmentation to improve performance of
deep neural network (DNN) embeddings for speaker recognition.
The DNN, which is trained to discriminate between speakers, maps
variable-length utterances to fixed-dimensional embeddings that we
call x-vectors. Prior studies have found that embeddings leverage
large-scale training datasets better than i-vectors. However, it can be
challenging to collect substantial quantities of labeled data for train-
ing. We use data augmentation, consisting of added noise and rever-
beration, as an inexpensive method to multiply the amount of train-
ing data and improve robustness. The x-vectors are compared with
i-vector baselines on Speakers in the Wild and NIST SRE 2016 Can-
tonese. We find that while augmentation is beneficial in the PLDA
classifier, it is not helpful in the i-vector extractor. However, the
x-vector DNN effectively exploits data augmentation, due to its su-
pervised training. As a result, the x-vectors achieve superior perfor-
mance on the evaluation datasets.

Alternatively, neural networks can be directly optimized to dis-
criminate between speakers. This has potential to produce power-
ful, compact systems [13], that only require speaker labels to train.
In early systems, neural networks are trained to separate speakers,
and frame-level representations are extracted from the network and
used as features for Gaussian speaker models [14, 15, 16]. Heigold
et al., introduced an end-to-end system, trained on the phrase “OK
Google,” that jointly learns an embedding along with a similarity
metric to compare pairs of embeddings [13]. Snyder et al., adapted
this approach to a text-independent application and inserted a tem-
poral pooling layer into the network to handle variable-length seg-
ments [17]. The work in [1] split the end-to-end approach into two
parts: a DNN to produce embeddings and a separately trained classi-
fier to compare them. This facilitates the use of all the accumulated
backend technology developed over the years for i-vectors, such as
length-normalization, PLDA scoring, and domain adaptation tech-
niques.

OAIAT cnn b dEae e

Xx-vectors
0®000000

x-vector: Acoustic features

Acoustic features are mel spectrograms with 40 mel bands, then
passed through a 5-layer 1d CNN:

Al =g [3> wilmlh{Vin— m]
J m

The five layers have 512, 512, 512, 512, and 1500 channels,
respectively.

Xx-vectors
00®00000

x-vector: Supervector

@ The last layer of the CNN has 1500-dimensional vectors
h®)[n] = [h§5)[n], g?oo[n]]-r That's large enough to
permit different sectlons of the vector to represent mean shift
of different phonemes.

@ The supervector is a concatenation of the utterance mean and

. m
variance, s = vl where

EER WS _ 1 G ?
=y 2 v = g 3 (KO0 - m)

n=1

Xx-vectors
000®0000

x-vector: Intermediate vector

@ The x-vector itself is a linear compression of s down to 512
dimensions:
w=TTs,

where T € R512x3000 s 5 |earned projection matrix.

@ The matrix T is trained so that a further two-layer neural net,
applied to x, classifies all of the training speakers with
minimum cross-entropy.

@ After training, the 2-layer network is discarded. It's not
needed, because none of the test speakers are in the training
database anyway.

Xx-vectors
[oeYole] Yololo)

Similarity: Probabilistic Linear Discriminant Analysis

(PLDA)

Probabilistic linear discriminant analysis (PLDA) assumes that we
a training set of N speakers (not including the test speaker!). The
it training speaker is represented by some x-vectors Wil, .., Wim,

whose mean is
m
1
Vi = — E w;;
I m < 1,J
Jj=1

PLDA models v; and w;; as jointly Gaussian:
vi~ N(v|0,ATAT)
w;j ~ N(wlv, AAT),

The matrices A and W are a generalization of PCA called linear
discriminant analysis.

Xx-vectors
00000®00

Similarity: Probabilistic Linear Discriminant Analysis

(PLDA)

PLDA then computes the similarity between two test vectors,
vy =ATw; and u, = ATwy, as

likelihood(same)
likelihood(different)
J Pr(ui, u, v)dv
(f Pr(us, v dvl) (f Pr(us, vz)dvz)

R(Wl, W2)

If we set i = % (u1 + wp), then we can write:

N (a|0, ¥ + SN (w|a,)N (uwad, I)
N(U1|\II+I)N(U2|\I/+I) ’

R(Wl, W2) X

Xx-vectors
000000e0

Similarity: Probabilistic Linear Discriminant Analysis

(PLDA)

Two test utterances are then judged to have come from the same
speaker if their PLDA score is above a threshold:

- 1 R(W17W2)>9
0 otherwise

Xx-vectors
0000000e

x-vector: Results

——i-vector (acoustic)
MmN [i-vector (BNF)
40 i, - - x-vector i

20

10

Miss probability (in %)

0.5

0.1

0.01 01 051 2 5 10 20 40 60
False Alarm probability (in %)

d-vectors
°

Outline

@ d-vectors: LSTM Supervector, Cosine Similarity

d-vectors
00000

GENERALIZED END-TO-END LOSS FOR SPEAKER VERIFICATION

Li Wan Quan Wang

Alan Papir

Ignacio Lopez Moreno

Google Inc., USA

ABSTRACT

In this paper, we propose a new loss function called generalized
end-to-end (GE2E) loss, which makes the training of speaker ver-
ification models more efficient than our previous tuple-based end-
to-end (TE2E) loss function. Unlike TE2E, the GE2E loss function
updates the network in a way that emphasizes examples that are dif-
ficult to verify at each step of the t ng process. Additionally,
the GE2E loss does not require an initial stage of example selec-
tion. With these properties, our model with the new loss function
decreases speaker verification EER by more than 10%, while reduc-
ing the training time by 60% at the same time. We also introduce the
MultiReader technique, which allows us to do domain adaptation —
training a more accurate model that supports multiple keywords (i.e.,
“OK Google” and “Hey Google™) as well as multiple dialects.

Index Terms— Speaker verification, end-to-end loss, Multi-

papir, elnota

a} @google.com

1.2. Tuple-Based End-to-End Loss

In our previous work [!'], we proposed the tuple-based end-to-
end (TE2E) model, which simulates the two-stage process of
runtime enrollment and verification during training. In our ex-
periments, the TE2E model combined with LSTM [/] achieved
the best performance at the time. For each training step, a tu-
ple of one evaluation utterance x;~ and M enrollment utter-
ances X, (for m = M) is fed into our LSTM network:
{Xj~ (Xk1s ... » Xgar) }, Where x represents the features (log-mel-
filterbank energies) from a fixed-length segment, j and k represent
the speakers of the utterances, and j may or may not equal k. The
tuple includes a single utterance from speaker j and M different
utterance from speaker k. We call a tuple positive if x;~ and the
M enrollment utterances are from the same speaker, i.e., j = k,
and negative otherwise. We generate positive and negative tuples
alternatively.

T anch inent fanls

win mamenta tha T narmalizad eacn.

d-vectors
0®0000

d-vector: Overview

@ Acoustic features: 40 Mel filterbank coefficients

@ Supervector = 768d state vector of a unidirectional LSTM
after the end of the utterance

@ Intermediate vector (d-vector) = 256d linear projection of the
supervector

@ Similarity score: cosine similarity

WTW2
y= 1 Twilwer > ¢
0 otherwise

d-vectors
00®000

Supervector = 768d state vector of a unidirectional LSTM

Run the following system over a length-T entire utterance:

®& @

LSTM unit

‘ Fe It

| pe
a o tanh [0)
t

https://commons.wikimedia.org/wiki/File:Long_Short-Term_Memory.svg

e

—"| Cee1,Desr| —
(GRS

.| G,

£

t
tanh ’
i

...then ht is the supervector, and ot is the 256d d-vector.

https://commons.wikimedia.org/wiki/File:Long_Short-Term_Memory.svg

d-vectors
000®00

End-to-end training

Test speakers are not in the training set! Nevertheless, end-to-end
training is possible if your training set has a large enough number
of speakers. In that case you can use:

7+ speakers # utterances eCOS(Wj,i,Wj)

;C = JZI 2 |Og Zf:slpeakers eCOS(M’j,hWk)
T —_
w. Wy
Yy — J5!
oS W) = T e

where wy is the average d-vector computed from utterances of
speaker k.

d-vectors
0000®0

End-to-end training

Test speakers are not in the training set! Nevertheless, end-to-end
training is possible if your training set has a large enough number
of speakers:

@ i-vector was trained using 1,748 speakers

@ x-vector was trained using 2,600 speakers, but only beat
i-vector if it used data augmentation during training

@ d-vector was trained using 648,000 speakers

d-vectors
00000e

d-vector: Results

Table 1. MultiReader vs. directly mixing multiple data sources.

Test data Mixed data MultiReader
(Enroll — Verify) EER (%) EER (%)
OK Google — OK Google 1.16 0.82
OK Google — Hey Google 4.47 2.99
Hey Google — OK Google 3.30 2.30
Hey Google — Hey Google 1.69 1.15

Table 2. Text-dependent speaker verification EER.

Model Embed Loss Multi Average
Architecture Size Reader EER (%)
(512,) [17] 128 TE2E No 3.30
Yes 2.78
(128,64) x 3 64 TE2E No 3.55
Yes 2.67
(128,64) x 3 64 GE2E No 3.10

Yes 2.38

Summary
°

Outline

© Summary

Comparison of Systems

Summary
°

System Supervector Projection | Similarity| Training
Speak-
ers
i-vector Mean shift of | PCA cos 1,748
GMM centroids

x-vector Mean and variance | learned PLDA 2,600
of 1500d CNN out-
put

d-vector | Last state of | learned cos 648,000
LSTM

	Speaker Verification
	i-vectors: Baum-Welch Supervector, Cosine Similarity
	x-vectors: Mean-Pooled CNN Supervector, PLDA Similarity
	d-vectors: LSTM Supervector, Cosine Similarity
	Summary

