
Speaker Verification i-vectors x-vectors d-vectors Summary

Lecture 19: Speaker Verification

Mark Hasegawa-Johnson
These slides are in the public domain

University of Illinois

ECE 417: Multimedia Signal Processing

Speaker Verification i-vectors x-vectors d-vectors Summary

1 Speaker Verification

2 i-vectors: Baum-Welch Supervector, Cosine Similarity

3 x-vectors: Mean-Pooled CNN Supervector, PLDA Similarity

4 d-vectors: LSTM Supervector, Cosine Similarity

5 Summary

Speaker Verification i-vectors x-vectors d-vectors Summary

Outline

1 Speaker Verification

2 i-vectors: Baum-Welch Supervector, Cosine Similarity

3 x-vectors: Mean-Pooled CNN Supervector, PLDA Similarity

4 d-vectors: LSTM Supervector, Cosine Similarity

5 Summary

Speaker Verification i-vectors x-vectors d-vectors Summary

Speaker Verification: Problem Statement

Given: two test utterances, x1[n] and x2[n]

Decide: are they from the same speaker or not?

Speaker Verification i-vectors x-vectors d-vectors Summary

Why it’s hard

Usually, the test speakers were not represented in your
training database.

Usually, you don’t know what they are saying.

Usually, x1[n] and x2[n] are saying different things.

Usually, x1[n] and x2[n] are of different lengths.

Speaker Verification i-vectors x-vectors d-vectors Summary

General Principles

Convert x1[n] and x2[n] to spectrograms.

Create very high-dimensional supervectors

s1 =

 µ1,1
...

µ1,K

 , s2 =

 µ2,1
...

µ2,K

 ,
where µj ,k is an estimate of the way in which speaker j says
phoneme k .

Create intermediate-dimension embedding vectors wj = TT sj ,
where T is trained to optimize performance on a training
database.

Measure the similarity between w1 and w2.

Speaker Verification i-vectors x-vectors d-vectors Summary

Outline

1 Speaker Verification

2 i-vectors: Baum-Welch Supervector, Cosine Similarity

3 x-vectors: Mean-Pooled CNN Supervector, PLDA Similarity

4 d-vectors: LSTM Supervector, Cosine Similarity

5 Summary

Speaker Verification i-vectors x-vectors d-vectors Summary

Speaker Verification i-vectors x-vectors d-vectors Summary

Identity Vectors (i-vectors) Overview

1 Convert waveform to MFCC vectors xt
2 Gaussian mixture model soft-assigns each xt to a phoneme.

3 Baum-Welch computes the differences between this speaker’s
phonemes and the typical phonemes.

4 PCA reduces the supervector to an i-vector.

5 Measure similarity between two i-vectors using cosine
similarity.

Speaker Verification i-vectors x-vectors d-vectors Summary

Mel Frequency Cepstral Coefficients

Compute STFT

Convert to mel spectrogram
by nonlinearly resampling
the frequency axis, to get
semi-logarithmic frequencies

Convert from mel
spectrogram to MFCC:
approximate the PCA of
each column using a discrete
cosine transform

Speaker Verification i-vectors x-vectors d-vectors Summary

Gaussian Mixture Model

A Gaussian mixture model is like an HMM, but simpler:

Pr{qt = i} = ai

Pr{xt |qt = i} = N (xt |µi ,Σi)

The posterior probability of phoneme i at time t is therefore:

γt(i) = Pr{qt = i |xt} =
Pr{qt = i , xt}∑
k Pr{qt = k , xt}

=
aiN (xt |µi ,Σi)∑
k akN (xt |µk ,Σk)

Speaker Verification i-vectors x-vectors d-vectors Summary

Soft Phoneme Segmentation using GMM

The image below shows hard phoneme alignment. A GMM
computes soft phoneme alignment, γt(i) = Pr{qt = i |xt}.

Speaker Verification i-vectors x-vectors d-vectors Summary

GMM Supervector

A GMM supervector lists, for each phoneme, the differences
between the way in which this person produces the phoneme and
the way in which a typical person would produce the phoneme:

s =


∑

t γt(1)(xt−µ1)∑
t γt(1)

...∑
t γt(N)(xt−µN)∑

t γt(N)


The dimension of this vector is very large. Typically each xt is a
40-dimensional MFCC vector, and typically there are 2048
Gaussians, for a total len(s) = 2048× 40 = 81920.

Speaker Verification i-vectors x-vectors d-vectors Summary

i-vector

The i-vector is a principal components analysis of the GMM
supervector:

w = G−1TT s

where the columns of T ∈ <81920×600 are the eigenvectors of
the covariance of s, and G is a diagonal normalization matrix
related to the eigenvalues.

The dimension of w is chosen to be intermediate between the
dimension of s (81920) and the dimension of xt (40).
Typically, len(w) ≈ 600. Although i-vector originally meant
“identity vector,” people sometimes also gloss it as
“intermediate vector.”

Speaker Verification i-vectors x-vectors d-vectors Summary

Similarity

The i-vector is a PCA of the
differences between the
test speaker’s productions of
phonemes versus the typical
production. How do we
evaluate similarity in this
space?

The problem: covariances
are diagonal in this space,
but not uniform (example at
right is chemical analysis,
but speaker verification
looks similar).

https://commons.wikimedia.

org/wiki/File:

PCA_of_Haplogroup_J_using_

37_STRs.png

https://commons.wikimedia.org/wiki/File:PCA_of_Haplogroup_J_using_37_STRs.png
https://commons.wikimedia.org/wiki/File:PCA_of_Haplogroup_J_using_37_STRs.png
https://commons.wikimedia.org/wiki/File:PCA_of_Haplogroup_J_using_37_STRs.png
https://commons.wikimedia.org/wiki/File:PCA_of_Haplogroup_J_using_37_STRs.png

Speaker Verification i-vectors x-vectors d-vectors Summary

Similarity Measures

The original i-vector paper tested two similarity measures:

Directly threshold the cosine similarity:

y =

{
1

wT
1 w2

‖w1‖‖w2‖ > θ

0 otherwise

Train a binary SVM using the cosine similarity as the kernel

Both of these measures, applied to i-vectors, were tested against
joint factor analysis (JFA), the previous state of the art.

Speaker Verification i-vectors x-vectors d-vectors Summary

i-vector: Results

Speaker Verification i-vectors x-vectors d-vectors Summary

Outline

1 Speaker Verification

2 i-vectors: Baum-Welch Supervector, Cosine Similarity

3 x-vectors: Mean-Pooled CNN Supervector, PLDA Similarity

4 d-vectors: LSTM Supervector, Cosine Similarity

5 Summary

Speaker Verification i-vectors x-vectors d-vectors Summary

Speaker Verification i-vectors x-vectors d-vectors Summary

x-vector: Acoustic features

Acoustic features are mel spectrograms with 40 mel bands, then
passed through a 5-layer 1d CNN:

h
(l)
i [n] = g

∑
j

∑
m

w
(l)
i ,j [m]h

(l−1)
j [n −m]


The five layers have 512, 512, 512, 512, and 1500 channels,
respectively.

Speaker Verification i-vectors x-vectors d-vectors Summary

x-vector: Supervector

The last layer of the CNN has 1500-dimensional vectors

h(5)[n] = [h
(5)
1 [n], . . . , h

(5)
1500[n]]T . That’s large enough to

permit different sections of the vector to represent mean shift
of different phonemes.

The supervector is a concatenation of the utterance mean and

variance, s =

[
m
v

]
, where

m =
1

N

N∑
n=1

h(5)[n], v =
1

N − 1

N∑
n=1

(
h(5)[n]−m

)2

Speaker Verification i-vectors x-vectors d-vectors Summary

x-vector: Intermediate vector

The x-vector itself is a linear compression of s down to 512
dimensions:

w = TT s,

where T ∈ <512×3000 is a learned projection matrix.

The matrix T is trained so that a further two-layer neural net,
applied to x , classifies all of the training speakers with
minimum cross-entropy.

After training, the 2-layer network is discarded. It’s not
needed, because none of the test speakers are in the training
database anyway.

Speaker Verification i-vectors x-vectors d-vectors Summary

Similarity: Probabilistic Linear Discriminant Analysis
(PLDA)

Probabilistic linear discriminant analysis (PLDA) assumes that we
a training set of N speakers (not including the test speaker!). The
i th training speaker is represented by some x-vectors wi ,1, . . . ,wi ,m,
whose mean is

vi =
1

m

m∑
j=1

wi ,j

PLDA models vi and wi ,j as jointly Gaussian:

vi ∼ N (v |0,AΨAT)

wi ,j ∼ N (w |vi ,AAT),

The matrices A and Ψ are a generalization of PCA called linear
discriminant analysis.

Speaker Verification i-vectors x-vectors d-vectors Summary

Similarity: Probabilistic Linear Discriminant Analysis
(PLDA)

PLDA then computes the similarity between two test vectors,
u1 = ATw1 and u2 = ATw2, as

R(w1,w2) =
likelihood(same)

likelihood(different)

=

∫
Pr(u1,u2, v)dv(∫

Pr(u1, v1)dv1

) (∫
Pr(u2, v2)dv2

)
If we set ū = 1

2 (u1 + u2), then we can write:

R(w1,w2) ∝
N
(
ū|0,Ψ + 1

2 I
)
N (u1|ū, I)N (u2|ū, I)

N (u1|Ψ + I)N (u2|Ψ + I)
,

Speaker Verification i-vectors x-vectors d-vectors Summary

Similarity: Probabilistic Linear Discriminant Analysis
(PLDA)

Two test utterances are then judged to have come from the same
speaker if their PLDA score is above a threshold:

y =

{
1 R(w1,w2) > θ

0 otherwise

Speaker Verification i-vectors x-vectors d-vectors Summary

x-vector: Results

Speaker Verification i-vectors x-vectors d-vectors Summary

Outline

1 Speaker Verification

2 i-vectors: Baum-Welch Supervector, Cosine Similarity

3 x-vectors: Mean-Pooled CNN Supervector, PLDA Similarity

4 d-vectors: LSTM Supervector, Cosine Similarity

5 Summary

Speaker Verification i-vectors x-vectors d-vectors Summary

Speaker Verification i-vectors x-vectors d-vectors Summary

d-vector: Overview

Acoustic features: 40 Mel filterbank coefficients

Supervector = 768d state vector of a unidirectional LSTM
after the end of the utterance

Intermediate vector (d-vector) = 256d linear projection of the
supervector

Similarity score: cosine similarity

y =

{
1

wT
1 w2

‖w1‖‖w2‖ > θ

0 otherwise

Speaker Verification i-vectors x-vectors d-vectors Summary

Supervector = 768d state vector of a unidirectional LSTM

Run the following system over a length-T entire utterance:

https://commons.wikimedia.org/wiki/File:Long_Short-Term_Memory.svg

. . . then hT is the supervector, and oT is the 256d d-vector.

https://commons.wikimedia.org/wiki/File:Long_Short-Term_Memory.svg

Speaker Verification i-vectors x-vectors d-vectors Summary

End-to-end training

Test speakers are not in the training set! Nevertheless, end-to-end
training is possible if your training set has a large enough number
of speakers. In that case you can use:

L =

speakers∑
j=1

utterances∑
i=1

log

(
ecos(wj,i ,w̄j)∑# speakers

k=1 ecos(wj,i ,w̄k)

)

cos(wj ,i , w̄k) =
wT

j ,i w̄k

‖wj ,i‖‖w̄k‖
,

where w̄k is the average d-vector computed from utterances of
speaker k .

Speaker Verification i-vectors x-vectors d-vectors Summary

End-to-end training

Test speakers are not in the training set! Nevertheless, end-to-end
training is possible if your training set has a large enough number
of speakers:

i-vector was trained using 1,748 speakers

x-vector was trained using 2,600 speakers, but only beat
i-vector if it used data augmentation during training

d-vector was trained using 648,000 speakers

Speaker Verification i-vectors x-vectors d-vectors Summary

d-vector: Results

Speaker Verification i-vectors x-vectors d-vectors Summary

Outline

1 Speaker Verification

2 i-vectors: Baum-Welch Supervector, Cosine Similarity

3 x-vectors: Mean-Pooled CNN Supervector, PLDA Similarity

4 d-vectors: LSTM Supervector, Cosine Similarity

5 Summary

Speaker Verification i-vectors x-vectors d-vectors Summary

Comparison of Systems

System Supervector Projection Similarity Training
Speak-
ers

i-vector Mean shift of
GMM centroids

PCA cos 1,748

x-vector Mean and variance
of 1500d CNN out-
put

learned PLDA 2,600

d-vector Last state of
LSTM

learned cos 648,000

	Speaker Verification
	i-vectors: Baum-Welch Supervector, Cosine Similarity
	x-vectors: Mean-Pooled CNN Supervector, PLDA Similarity
	d-vectors: LSTM Supervector, Cosine Similarity
	Summary

