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Basics of DSP: Filtering

y [n] =
∞∑

m=−∞
h[m]x [n −m]

Y (z) = H(z)X (z)
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Finite Impulse Response (FIR)

y [n] =
N−1∑
m=0

h[m]x [n −m]

The coefficients, h[m], are chosen in order to design a frequency
response:

H(ω) =
N−1∑
n=0

h[n]e−jωn
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Infinite Impulse Response (IIR)

y [n] =
N−1∑
m=0

bmx [n −m] +
M−1∑
m=1

amy [n −m]

The coefficients, bm and am, are chosen in order to design a
frequency response: The coefficients, h[m], are chosen in order to
design a frequency response:

H(ω) =

∑N−1
m=0 bme

−jωm

1−
∑M−1

m=1 ame
−jωm
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Convolutional Neural Net = Nonlinear(FIR)

Image CC-SA-4.0 by Aphex34, https://commons.wikimedia.org/wiki/File:Conv_layer.png

https://commons.wikimedia.org/wiki/File:Conv_layer.png
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Convolutional Neural Net = Nonlinear(FIR)

ŷ [n] = g

(
N−1∑
m=0

w [m]x [n −m]

)
The coefficients, w [m], are chosen to minimize some kind of error.
For example, suppose that the goal is to make ŷ [n] resemble a
target signal y [n]; then we might use

L =
1

2

N∑
n=0

(ŷ [n]− y [n])2

and choose

w [n]← w [n]− η ∂L
∂w [n]
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Recurrent Neural Net (RNN) = Nonlinear(IIR)

Image CC-SA-4.0 by Ixnay,

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
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Recurrent Neural Net (RNN) = Nonlinear(IIR)

h[n] = g

(
x [n] +

M−1∑
m=1

w [m]h[n −m]

)
The coefficients, w [m], are chosen to minimize the error. For
example, suppose that the goal is to make h[n] resemble a target
signal y [n]; then we might use

L =
1

2

N∑
n=0

(h[n]− y [n])2

and choose

w [m]← w [m]− η ∂L
∂w [m]
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Partial Derivatives

In order to do back-propagation in recurrent neural networks, it
will be important to distinguish between partial and total
derivatives. Unfortunately, these are not defined very clearly in
introductory calculus classes.
The standard definition of the partial derivative of f (~x) w.r.t. x1,
where ~x = [x1, . . . , xD ]T , is

∂f

∂x1
= lim

ε→0

(
f (x1 + ε, x2, . . .)− f (x1, x2, . . .)

ε

)
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Partial Derivatives

∂f

∂x1
= lim

ε→0

(
f (x1 + ε, x2, . . .)− f (x1, x2, . . .)

ε

)
In other words, ∂f

∂xk
is defined as the derivative of f w.r.t. xk while

holding all of the other xd , for 1 ≤ d ≤ D, constant.
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Total Derivatives

The partial derivative and total derivative differ if some of the
other elements of the vector ~x might depend on xk . For example,
suppose that each xj is a function of xi for i ≤ j :

xj = gj(x1, . . . , xj−1)

Then the total derivative allows each of the xj , for j > k , to vary
as xk varies:

df

dx1
= lim

ε→0

(
f (x1 + ε, x2(x1 + ε), . . .)− f (x1, x2(x1), . . .)

ε

)
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Partial and Total Derivatives

The partial derivative of f w.r.t. xk holds all of the other
variables constant, while varying only xk . The other variables
are held constant ignoring any dependency they otherwise
would have on xk :

∂f

∂x1
= lim

ε→0

(
f (x1 + ε, x2(x1), . . .)− f (x1, x2(x1), . . .)

ε

)
The total derivative takes into account the effect that
varying xk might have on all the other variables:

df

dx1
= lim

ε→0

(
f (x1 + ε, x2(x1 + ε), . . .)− f (x1, x2(x1), . . .)

ε

)



FIR/IIR CNN/RNN Total Derivatives Flow Graphs FCN BPTT Conclusion Example

The Chain Rule

Suppose that f depends on x , and also on a number of
intermediate variables z1, . . . , zN . Suppose, too, that z1 depends
on z2, . . . , zN , and so on. Then:

df

dx
=
∂f

∂x
+

N∑
i=1

df

dzi

∂zi
∂x

=
∂f

∂x
+

N∑
i=1

∂f

∂zi

dzi
dx

Notice that either the df
dzi

are total, or the dzi
dx are total, but not

both. You need to choose: will you model all of the interactions in
the second half (the df

dzi
), or in the first half (the dzi

dx )? Either one
is fine.



FIR/IIR CNN/RNN Total Derivatives Flow Graphs FCN BPTT Conclusion Example

Chain Rule Example

Suppose we have the following network:

h = cos(x)

ŷ =
√

1 + h2

Suppose we need dŷ
dx . We find it as

dŷ

dx
=

dŷ

dh

∂h

∂x
=

(
h√

1 + h2

)
(− sin(x))



FIR/IIR CNN/RNN Total Derivatives Flow Graphs FCN BPTT Conclusion Example

Chain Rule Example

Suppose we have the following network:

h0 = cos(x)

h1 =
1√
2

(
h30 + sin(x)

)
ŷ =

√
h20 + h21

What is dŷ
dx ? How can we compute that?
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Back-Prop Example

First, we find dŷ
dh1

:

ŷ =
√
h20 + h21

dŷ

dh1
=

h1√
h20 + h21
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Chain Rule Example

Second, back-prop to find dŷ
dh0

:

dŷ

dh0
=

∂ŷ

∂h0
+

dŷ

dh1

∂h1
∂h0

=
h0√

h20 + h21

+
h1√

h20 + h21

(
3h20√

2

)
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Chain Rule Example

Third, back-prop to find dŷ
dx :

dŷ

dx
=

dŷ

dh1

∂h1
∂x

+
dŷ

dh0

∂h0
∂x

=

 h1√
h20 + h21

(cos(x)√
2

)
−


(
h0 +

(
3√
2

)
h20h1

)
√
h20 + h21

 sin(x)
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Flow Graphs

x

h0

h1

ŷ

Forward propagation can be summarized by a flow graph, which
specifies the dependencies among variables, without specifying the
functional form of the dependence. For example, the above graph
shows that

ŷ is a function of h0 and h1.

h1 is a function of x and h0.

h0 is a function of x .
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Review: Partial and Total Derivatives

The total derivative symbol, dL
dhk

, always means the same
thing: derivative including the contributions of all paths from
hk to L.

The partial derivative symbol, ∂L
∂hk

, can mean different
things in different equations (because different equations
might hold constant a different set of other variables).

There is a notation we can use to specify which other
variables are being held constant: ∂L

∂hk
(ŷ1, ŷ6, ŷ10, h1, . . . , hN)

means “hold ŷ1, ŷ6, ŷ10, and h1, . . . , hk−1, hk+1, . . . , hN
constant.”
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Chain Rule: Total Derivative

x

h0

h1

ŷ

Suppose we want to find dŷ
dx . The total derivative can be

computed using the chain rule:

dŷ

dx
=
∂ŷ

∂x
+

dŷ

dh1

∂h1
∂x

+
dŷ

dh0

∂h0
∂x

,

where
dŷ

dh0
=

∂ŷ

∂h0
+

dŷ

dh1

∂h1
∂h0



FIR/IIR CNN/RNN Total Derivatives Flow Graphs FCN BPTT Conclusion Example

Chain Rule: Partial Derivatives

x

h0

h1

ŷ

A far more common thing to do in neural nets, though, is to find
the partial derivative while holding only some of the other
variables constant. For instance, as suggested by the dashed line
above, suppose we want to find the partial derivative ∂ŷ

∂h0
while

holding x constant, but allowing h1 to vary:

∂ŷ

∂h0
(h0, x) =?
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Chain Rule: Partial Derivatives

x

h0

h1

ŷ

The chain rule to compute a partial derivative is similar to the one
for total derivatives:

∂ŷ

∂h0
(x , h0) =

∂ŷ

∂h1
(x , h0, h1)

∂h1
∂h0

(x , h0, h1) +
∂ŷ

∂h0
(x , h0, h1)
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Chain Rule: Partial Derivatives

x

h0

h1

ŷ

We start with the partials that hold all other variables frozen,
e.g., ∂ŷ

∂h0
(x , h0, h1).

Then we eliminate h1 from the list of frozen variables, by
adding its dependency into all other partials:

∂ŷ

∂h0
(x , h0) =

∂ŷ

∂h1
(x , h0, h1)

∂h1
∂h0

(x , h0, h1) +
∂ŷ

∂h0
(x , h0, h1)
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Review: Excitation and Activation

The activation of a hidden node is the output of the
nonlinearity. For example, in a fully-connected network with

outputs ŷk , weights w
(l)
j ,k in the l th layer, bias b

(l)
k , nonlinearity

g(), and hidden node activations h, the activation of the kth

output node is

ŷk = g

b
(2)
k +

p∑
j=1

w
(2)
k,j hj


The excitation of a hidden node is the input of the
nonlinearity. For example, the excitation of the node above is

ξ
(2)
k = b

(2)
k +

p∑
j=1

w
(2)
k,j hj
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Fully-Connected Network

1 x1 x2 . . . xD

1 h1 h2 . . . hN

ŷ1 ŷ2 . . . ŷK

ŷ = h(x ,W (1),b(1),W (2),b(2))

In a fully-connected network, we
usually want two types of
derivatives:

The gradient of L with
respect to a layer, i.e.,

∂L
∂hj

(h1, . . . , hN)

The gradient of L with
respect to the network
weights, i.e.,

∂L
∂w

(1)
i ,j

(w
(1)
1,1 , . . . ,w

(2)
K ,N)
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Fully-Connected Network

1 x1 x2 . . . xD

1 h1 h2 . . . hN

ŷ1 ŷ2 . . . ŷK

ŷ = h(x ,W (1),b(1),W (2),b(2))

Chain Rule in a Fully-Connected
Network

∂L
∂hj

(h) =

K∑
k=1

∂L
∂ŷk

(ŷ ,h)

× ∂ŷk
∂hj

(ŷ ,h)
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New Notation

The notation on the previous slide is cumbersome. Instead, let’s
use:

∂ŷk
∂xj

means “the derivative of ŷk with respect to xj if all other

variables are held constant.” In this graph, for example,
∂ŷk
∂xj

= 0.

dŷk
dxj

means “the derivative of ŷk with respect to xj if the

variables on the path between them are allowed to vary.”

In many cases, those two will be the same, e.g., in this graph,

dŷk
dxj

=
∑
i

∂ŷk
∂hi

∂hi
∂xj

=
∑
i

dŷk
dhi

dhi
dxj
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Fully-Connected Network

1 x1 x2 . . . xD

1 h1 h2 . . . hN

ŷ1 ŷ2 . . . ŷK

ŷ = h(x ,W (1),b(1),W (2),b(2))

New Notation

Then we can write:

dL
dhj

=
K∑

k=1

dL
dŷk

∂ŷk
∂hj
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Fully-Connected Network

1 x1 x2 . . . xD

1 h1 h2 . . . hN

ŷ1 ŷ2 . . . ŷK

ŷ = h(x ,W (1),b(1),W (2),b(2))
Back-Prop in a Fully-Connected
Network

Similarly,

dL
dw

(1)
j ,k

=
N∑
j=1

dL
dhj

∂hj

∂w
(1)
j ,k

=
N∑
j=1

dL
dhj

xk
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Gradients and Partial Derivatives

A warning about our notation:

The gradient is defined to be a vector of partial derivatives,
i.e.,

∇hL ≡


∂L
∂h1

(h1, . . . , hN)
...

∂L
∂hN

(h1, . . . , hN)


The partial derivative only keeps constant the other elements
of h—it does not keep constant any other variables on the
path between h and L. Thus, usually, we can write

∇hL ≡


∂L
∂h1

(h1, . . . , hN)
...

∂L
∂hN

(h1, . . . , hN)

 =


dL
dh1
...
dL
dhN
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Back-Prop in an RNN

Suppose we have a recurrent neural net, defined by

ξ[n] = x [n] +
M−1∑
m=1

w [m]h[n −m]

h[n] = g (ξ[n])

then

dL
dw [m]

=
∑
n

dL
dξ[n]

∂ξ[n]

∂w [m]

=
∑
n

dL
dξ[n]

h[n −m]
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Partial vs. Full Derivatives

For example, suppose we want h[n] to be as close as possible to
some target signal y [n]:

L =
1

2

∑
n

(h[n]− y [n])2

Notice that L depends on h[n] in many different ways:

dL
dh[n]

=
∂L
∂h[n]

+
dL

dh[n + 1]

∂h[n + 1]

∂h[n]
+

dL
dh[n + 2]

∂h[n + 2]

∂h[n]
+ . . .
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Partial vs. Full Derivatives

In general,

dL
dh[n]

=
∂L
∂h[n]

+
∞∑

m=1

dL
dh[n + m]

∂h[n + m]

∂h[n]

where
dL
dh[n] includes all of the different ways in which a change of

h[n] might effect L.
∂h[n+m]
∂h[n] keeps constant all variables on the path between h[n]

and h[n + m]. It only measures the direct connection between
these two variables.
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x [0] . . . x [n] x[n+ 1] . . . x [T ]

h[0] . . . h[n] h[n+ 1] . . . h[T ]

L

Here’s a flow diagram that could represent:

h[n] = g

(
x [n] +

∞∑
m=0

w [m]h[n −m]

)

L =
1

2

∑
n

(y [n]− h[n])2
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x [0] . . . x [n] x[n+ 1] . . . x [T ]

h[0] . . . h[n] h[n+ 1] . . . h[T ]

L

Back-propagation through time does this:

dL
dh[n]

=
∂L
∂h[n]

+
T−n∑
m=1

dL
dh[n + m]

∂h[n + m]

∂h[n]
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Partial vs. Total Derivatives

So for example, if

L =
1

2

∑
n

(h[n]− y [n])2

then the partial derivative of L w.r.t. h[n] while keeping all other
variables constant is:

∂L
∂h[n]

= h[n]− y [n]

and the total derivative of L w.r.t. h[n] is

dL
dh[n]

= (h[n]− y [n]) +
∞∑

m=1

dL
dh[n + m]

∂h[n + m]

∂h[n]
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Partial vs. Total Derivatives

So for example, if

h[n] = g(ξ[n]), ξ[n] = x [n] +
M∑

m=1

w [m]h[n −m]

then the partial derivative of h[n + k] w.r.t. h[n] is

∂h[n + k]

∂h[n]
= ġ(ξ[n + k])w [k]

where we use the notation ġ(ξ) = dg
dξ .
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Synchronous Backprop vs. BPTT

The basic idea of back-prop-through-time is divide-and-conquer.

1 Synchronous Backprop: First, calculate the partial
derivative of L w.r.t. the excitation ξ[n] at time n, assuming
that all other time steps are held constant.

∂L
∂ξ[n]

2 Back-prop through time: Second, iterate backward through
time to calculate the total derivative

dL
dξ[n]
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Synchronous Backprop in an RNN

Suppose we have a recurrent neural net, defined by

ξ[n] = x [n] +
M∑

m=1

w [m]h[n −m]

h[n] = g (ξ[n])

L =
1

2

∑
n

(h[n]− y [n])2

then
∂L
∂h[n]

= (h[n]− y [n])
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Back-Prop Through Time (BPTT)

Suppose we have a recurrent neural net, defined by

ξ[n] = x [n] +
M∑

m=1

w [m]h[n −m]

h[n] = g (ξ[n])

L =
1

2

∑
n

(h[n]− y [n])2

then

dL
dh[n]

=
∂L
∂h[n]

+
∞∑

m=1

dL
dh[n + m]

∂h[n + m]

∂h[n]

=
∂L
∂h[n]

+
M∑

m=1

dL
dh[n + m]

ġ(ξ[n + m])w [m]
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Weight Gradient

Suppose we have a recurrent neural net, defined by

ξ[n] = x [n] +
M∑

m=1

w [m]h[n −m]

h[n] = g (ξ[n])

L =
1

2

∑
n

(h[n]− y [n])2

then the weight gradient is given by

∂L
∂w [m]

(w [1], . . . ,w [M]) =
∑
n

dL
dh[n]

∂h[n]

∂w [m]
(w [1], . . . ,w [M])

=
∑
n

dL
dh[n]

ġ(ξ[n])h[n −m]
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Conclusions

Back-Prop, in general, is just the chain rule of calculus:

dL
dw

=
N−1∑
i=0

dL
dhi

∂hi
∂w

Convolutional Neural Networks are the nonlinear version of an
FIR filter. Coefficients are shared across time steps.
Recurrent Neural Networks are the nonlinear version of an IIR
filter. Coefficients are shared across time steps. Error is
back-propagated from every output time step to every input
time step.

dL
dh[n]

=
∂L
∂h[n]

+
M∑

m=1

dL
dh[n + m]

ġ(ξ[n + m])w [m]

∂L
∂w [m]

(w [1], . . . ,w [M]) =
∑
n

dL
dh[n]

ġ(ξ[n])h[n −m]
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Written Example

Suppose that h[t] = [h1[t], . . . , hN [t]]T is a vector, and suppose
that

h[t] = tanh (Ux [t] + V1h[t − 1] + V2h[t − 2])

L =
1

2

∑
t

‖y −Wh[t]‖2

where U is a N ×D matrix, W is a K ×N matrix, and V1 and V2

are N × N matrices. Find an algorithm to compute ∇h[t]L.
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