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Scalar Gaussian random variables

pX (x) =
1√

2πσ2
e−

1
2( x−µ

σ )
2
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Scalar Gaussian random variables

µ = E [X ], σ2 = E [(X − µ)2]

https://commons.wikimedia.org/wiki/File:

Normal_Distribution_PDF.svg
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Gaussian random vectors

pX(x) =
1

(2π)D/2|Σ|1/2
e−

1
2
(x−µ)TΣ−1(x−µ)

https://commons.wikimedia.org/wiki/File:EM-Gaussian-data.svg

https://commons.wikimedia.org/wiki/File:EM-Gaussian-data.svg


Review Non-Diagonal Covariance Eigenvectors NN PCA PCA Features Gram Summary

Gaussian random vectors

x =

 x1
· · ·
xD


µ = E [x] =

 µ1
· · ·
µD



Example: Instances of Gaussian
random vectors

https://commons.wikimedia.org/

wiki/File:EM-Gaussian-data.svg

https://commons.wikimedia.org/wiki/File:EM-Gaussian-data.svg
https://commons.wikimedia.org/wiki/File:EM-Gaussian-data.svg
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Gaussian random vectors

If the Gaussians are independent
but not identical, then:

Σ =

 σ21 0 · · ·
0 σ22 · · ·
...

... σ2D


where

σ2i = E [(xi − µi )2]

Example: Instances of Gaussian
random vectors

https://commons.wikimedia.org/

wiki/File:EM-Gaussian-data.svg

https://commons.wikimedia.org/wiki/File:EM-Gaussian-data.svg
https://commons.wikimedia.org/wiki/File:EM-Gaussian-data.svg
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Maximum Likelihood Parameter
Estimation

In the real world, we don’t know µ
and Σ!
If we have a training database
D = {x1, . . . , xM}, we can estimate
µ and Σ according to{

µ̂ML, Σ̂ML

}
= argmax

M∏
m=1

p(xm|µ,Σ)

= argmax
M∑

m=1

ln p(xm|µ,Σ)

Example: Instances of Gaussian
random vectors

https://commons.wikimedia.org/

wiki/File:EM-Gaussian-data.svg

https://commons.wikimedia.org/wiki/File:EM-Gaussian-data.svg
https://commons.wikimedia.org/wiki/File:EM-Gaussian-data.svg
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Maximum Likelihood Parameter
Estimation

If you differentiate the RHS on the
previous slide, and set it to zero,
you find that the maximum
likelihood solution is

µ̂ML =
1

M

M−1∑
m=0

xm

σ2i ,ML =
1

M

M−1∑
m=0

(xi − µi )2

Example: Instances of Gaussian
random vectors

https://commons.wikimedia.org/

wiki/File:EM-Gaussian-data.svg

https://commons.wikimedia.org/wiki/File:EM-Gaussian-data.svg
https://commons.wikimedia.org/wiki/File:EM-Gaussian-data.svg
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Sample Mean, Sample Variance

The ML estimate of σ2i is usually
too small. It is better to adjust it
slightly. The following are the
unbiased estimators of µ and σ2i ,
also called the sample mean and
sample variance:

µ =
1

M

M−1∑
m=0

xm

σ2i =
1

M − 1

M−1∑
m=0

(xi − µi )2

Example: Instances of Gaussian
random vectors

https://commons.wikimedia.org/

wiki/File:EM-Gaussian-data.svg

https://commons.wikimedia.org/wiki/File:EM-Gaussian-data.svg
https://commons.wikimedia.org/wiki/File:EM-Gaussian-data.svg
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Sample Mean, Sample Variance

µ =
1

M

M−1∑
m=0

xm

σ2i =
1

M − 1

M−1∑
m=0

(xm−µ)(xm−µ)T

Sample mean and sample
covariance are not the same as real
mean and real covariance, but we’ll
use the same letters (µ and Σ)
unless the problem requires us to
distinguish.

Example: Instances of Gaussian
random vectors

https://commons.wikimedia.org/

wiki/File:EM-Gaussian-data.svg

https://commons.wikimedia.org/wiki/File:EM-Gaussian-data.svg
https://commons.wikimedia.org/wiki/File:EM-Gaussian-data.svg
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Gaussians with non-diagonal covariance matrix

If the dimensions are jointly Gaussian but not independent then
we can still write the multivariate Gaussian as

pX(x) =
1

(2π)D/2|Σ|1/2
e−

1
2
(x−µ)TΣ−1(x−µ)

. . . but now the off-diagonal elements of the covariance matrix, Σ,
are no longer zero.

https://commons.wikimedia.org/wiki/File:

Multinormal_3_true.png,https://commons.wikimedia.org/wiki/File:

Gaussian_copula_gaussian_marginals.png

https://commons.wikimedia.org/wiki/File:Multinormal_3_true.png
https://commons.wikimedia.org/wiki/File:Multinormal_3_true.png
https://commons.wikimedia.org/wiki/File:Gaussian_copula_gaussian_marginals.png
https://commons.wikimedia.org/wiki/File:Gaussian_copula_gaussian_marginals.png
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Example

Suppose that X1 and X2 are
Gaussian RVs with means 1 and
−1, variances 1 and 4, and
covariance 1.

x =

[
1
−1

]

σ21 = E
[
(x1 − µ1)2

]
= 1

σ22 = E
[
(x2 − µ2)2

]
= 4

ρ1,2 = E [(x1 − µ1)(x2 − µ2)]

= 1

Example
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Example

Suppose that X1 and X2 are
Gaussian RVs with means 1 and
−1, variances 1 and 4, and
covariance 1.

x =

[
1
−1

]

Σ = E
[
(x− µ)(x− µ)T

]
=

[
1 1
1 4

]

Example
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Determinant and inverse of a 2× 2 matrix

You should know the determinant and inverse of a 2× 2 matrix. If

Σ =

[
a b
c d

]
Then |Σ| = ad − bc, and

Σ−1 =
1

|Σ|

[
d −b
−c a

]
If you’ve never done it before, please prove this formula for yourself
by multiplying Σ−1Σ and verifying that the result is the identity
matrix.
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Example Multivariate Gaussian

The contour lines of our example are the contours along which the
Mahalanobis distance is equal to a constant:

d2
Σ(x,µ) = (x− µ)TΣ−1(x− µ)

=
1

σ21σ
2
2 − ρ21,2

[(x1 − µ1), (x2 − µ2)]

[
σ22 −ρ1,2
−ρ1,2 σ21

] [
x1 − µ1
x2 − µ2

]
=

σ22
|Σ|

(x1 − µ1)2 +
σ21
|Σ|

(x2 − µ2)2 − 2
ρ1,2
|Σ|

(x1 − µ1)(x2 − µ2)

This is the formula for an ellipse.
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Contours of equal Mahalanobis
distance are ellipses

d2
Σ(x,µ)

= (x− µ)TΣ−1(x− µ)

Example
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Maximum Likelihood Parameter Estimation

In the real world, we don’t know µ and Σ!
If we have a training database D = {x1, . . . , xM}, we can estimate
µ and Σ according to

{
µ̂ML, Σ̂ML

}
= argmax

M∏
m=1

p(xm|µ,Σ)

= argmax
M∑

m=1

ln p(xm|µ,Σ)

µ̂ML =
1

M

M−1∑
m=0

xm

Σ̂ML =
1

M

M−1∑
m=0

(xm − µ)(xm − µ)T
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Sample Mean, Sample Covariance

The ML estimate of Σ is usually too small. It is better to adjust it
slightly. The following are the unbiased estimators of µ and Σ,
also called the sample mean and sample covariance:

µ =
1

M

M−1∑
m=0

xm

Σ =
1

M − 1

M−1∑
m=0

(xm − µ)(xm − µ)T
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Review: Eigenvalues and eigenvectors of a symmetric
matrix

The eigenvectors and eigenvalues of a D ×D square matrix, A, are
the vectors u and scalars λ such that

Au = λu

|A− λI| = 0

If A is symmetric, then we can also multiply from the left:

uTA = λuT
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Review: Positive semi-definite matrix

A positive-semidefinite matrix (we write A < 0) is one such that,
for every vector u ∈ <D ,

uTAu ≥ 0

Every D × D matrix has D eigenvalues. A positive semi-definite
matrix is also guaranteed to have D eigenvectors, though some of
them may not be uniquely specified (if eigenvalues repeat, then the
corresponding eigenvectors can be any orthonormal vectors
spanning the corresponding subspace).
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Symmetric positive semi-definite matrices: eigenvectors are
orthonormal

If A is symmetric and positive-semidefinite, then

(uTi A)uj = (λiui )
Tuj

uTi (Auj) = uTi (λjuj)

These can only both be true if either λi = λj or uTi uj = 0. By
defining |ui | = 1, we can choose eigenvectors such that

uTi uj =

{
1 i = j
0 i 6= j

If we define the eigenvectors matrix as U = [u1, . . . ,uD ], then

UTU = I
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Symmetric positive semi-definite matrices: eigenvectors
diagonalize the matrix

If A is symmetric and positive-semidefinite, then

uTi Auj = uTi (λjuj) = λju
T
i uj =

{
λj , i = j

0, i 6= j

In other words, the eigenvectors orthogonalize A:

UTAU = Λ

. . . where Λ is the diagonal matrix of eigenvalues:

Λ =

 λ1 0 0
0 . . . 0
0 0 λD
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A symmetric positive semidefinite matrix is the weighted
sum of its eigenvectors

The previous slide showed that Λ = UTAU. Wrap that whole
equation in U · · ·UT , and you get:

UΛUT = UUTAUUT = A

In other words, any symmetric positive semidefinite matrix can be
expanded as:

A = [u1, . . . ,uD ]

 λ1 0 0
0 . . . 0
0 0 λD


 uT1

...
uTD

 =
D∑

d=1

λdudu
T
d
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Summary: properties of symmetric positive semidefinite
matrices

If A is any positive semidefinite matrix, then:

A = UΛUT ,

and
Λ = UTAU,

where Λ is diagonal and U is orthonormal:

UUT = UTU = I
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The covariance matrix is symmetric

Covariance is symmetric:

ρ1,2 = E [(x1 − µ1)(x2 − µ2)] = ρ2,1

. . . and therefore the covariance matrix is symmetric:

Σ = E
[
(x− µ)(x− µ)T

]

=


σ21 ρ1,2 · · · ρ1,M
ρ1,2 σ22 · · · ρ2,M

...
...

. . .
...

ρ1,M ρ2,M · · · σ2M
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The covariance matrix is positive semidefinite

The covariance matrix is also positive semidefinite. Here’s a proof.
Suppose we multiply it by any vector, u:

uTΣu

= uTE
[
(x− µ)(x− µ)T

]
u

= E
[
uT (x− µ)(x− µ)Tu

]
= E

[(
uT (x− µ)

)2]
≥ 0
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Summary: properties of the covariance matrix

If Σ is the covariance matrix of any Gaussian, then

Σ = UΛUT ,

and
Λ = UTΣU,

where Λ is diagonal and U is orthonormal:

UUT = UTU = I
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How do you classify an image?

Suppose we have a test image, xtest. We want to figure out: who
is this person?

Test Datum xtest:
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Training Data?

In order to classify the test image, we need some training data. For
example, suppose we have the following four images in our training
data. Each image, xm, comes with a label, `m, which is just a
string giving the name of the individual.

Training
Datum:
`1 =Colin
Powell:
x0 =

Training
Datum
`2 =Gloria
Arroyo:
x1 =

Training
Datum
`3 =Megawati
Sukarnoputri:
x2 =

Training
Datum
`4 =Tony Blair:
x3 =
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Nearest Neighbors Classifier

A “nearest neighbors classifier” makes the following guess: the test
vector is an image of the same person as the closest training vector:

ˆ̀test = `m∗ , m∗ =
M

argmin
m=1

‖xm − xtest‖

where “closest,” here, means Euclidean distance:

‖xm − xtest‖ =

√√√√ D∑
d=1

(xm,d − xtest,d)2
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Improved Nearest Neighbors: Eigenface

The problem with nearest-neighbors is that subtracting one
image from another, pixel-by-pixel, results in a measurement
that is dominated by noise.

We need a better measurement.

The solution is to find a signal representation, ym, such that
ym summarizes the way in which xm differs from other faces.

If we find ym using principal components analysis, then ym is
called an “eigenface” representation.
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Sample covariance

Remember that the sample covariance is defined as:

Σ =
1

M − 1

M−1∑
m=0

(xm − µ)(xm − µ)T

=
1

M − 1
XXT

. . . where X is the centered data matrix,

X = [x1 − µ, . . . , xM − µ]
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Centered data matrix

X = [x1 − µ, . . . , xM − µ]

Examples of xm − µ

https://commons.wikimedia.org/wiki/File:

PCA_Pires.jpg

https://commons.wikimedia.org/wiki/File:PCA_Pires.jpg
https://commons.wikimedia.org/wiki/File:PCA_Pires.jpg
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Principal component axes

The eigenvectors of the
sample covariance are
called the principal
component axes, or
principal component
directions.

Principal component axes

https://commons.wikimedia.org/wiki/File:

GaussianScatterPCA.svg

https://commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg
https://commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg
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Principal components

The principal component analysis of xm is the vector
ym = UT (xm − µ), where U are the eigenvectors of the
covariance. We can compute the principal components analysis
(PCA) of every vector in the training dataset by computing

Y = [y1, . . . , yM ]

= UTX

Now let’s ask: what is the sample covariance of the PCA vectors?
The sample covariance is defined as:

1

M − 1
YYT =

1

M − 1
UTXXTU

= UTΣU

= Λ

So the covariance of Y is a diagonal matrix, Λ.
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Principal components

The vector ym is called the principal components analysis (PCA)
of xm. Let’s examine its structure a little.

ym = UT (xm − µ) =

 uT1
...
uTD

 (xm − µ) =

 uT1 (xm − µ)
...

uTD(xm − µ)


We can say that the j th principal component of xm is

yj ,m = uTj (xm − µ)
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Orthogonal projection

Remember that the
eigenvectors were defined
to have unit length,
therefore yj ,m = uj(xm−µ)
is the orthogonal projection
of xm − µ onto the j th

principal component
direction.

Principal component axes

https://commons.wikimedia.org/wiki/File:

Orthogonal_Projection_qtl1.svg

https://commons.wikimedia.org/wiki/File:Orthogonal_Projection_qtl1.svg
https://commons.wikimedia.org/wiki/File:Orthogonal_Projection_qtl1.svg


Review Non-Diagonal Covariance Eigenvectors NN PCA PCA Features Gram Summary

Principal components =
Orthonormal projection
onto principal component
directions

Remember that the
eigenvector matrix is
orthonormal, therefore
y = UT (xm − µ) is just an
expression of xm − µ in a
new set of axes. This
operation is sometimes
called “rotation.”

https://commons.wikimedia.org/wiki/File:

Diagonalization_as_rotation.gif

https://commons.wikimedia.org/wiki/File:Diagonalization_as_rotation.gif
https://commons.wikimedia.org/wiki/File:Diagonalization_as_rotation.gif
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The principal components are linearly independent

Suppose that x is a Gaussian random vector:

pX (x) =
1√
|2πΣ|

e−
1
2
(x−µ)TΣ−1(x−µ)

=
1√

|2πUΛUT |
e−

1
2
(x−µ)TUΛ−1UT (x−µ)

=
1√
|2πΛ|

e−
1
2
yTΛ−1y

=
D∏
i=1

1√
2πλi

e
− 1

2

y2i
λi

So if x is a Gaussian random vector, then the principal components
are independent zero-mean Gaussian random variables with
variances of λi .
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Principal components are uncorrelated, and PC with larger
eigenvalues have more energy

In the following figure, notice that (1) the principal components
are uncorrelated with one another, (2) the eigenvalues have been
sorted so that λ0 > λ1 > λ2 and so on. With this sorting, you see
that the the first PC has the biggest variance:
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Feature embedding

Suppose x is a vector we’d like to classify.

It has very high dimension, e.g., 6 million.
High-dimensional classifiers are hard to learn.
Probably most of the features are redundant.

Let’s learn an embedding z = f (x) such that:

z has low dimension, e.g., 1000
z contains the important information from x
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Measuring “importance” as “variance”

There are many ways to formulate the problem of finding the
important information in x. One of the simplest methods that
works well is to find z = [z1, . . . , zK ]T , K � D, such that:

Each zi is just an orthogonal projection of x, i.e.,
zi = fTi (x− µ), where |fi | = 1.

Each zi is uncorrelated with all the others, E [zizj ] = 0.

Given those constraints, it makes sense to choose zi to
capture as much of the sample variance of x as possible, in
other words, we want:

F = argmax
M∑

m=1

K∑
i=1

z2i ,m

such that: zm = FT (xm−µ),F ∈ <D×K , FTF = I,
M∑

m=1

zi ,mzj ,m = 0
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PCA = Maximum-variance linear feature embedding

We have decided that we want to maximize
∑

m

∑
i z

2
i ,m subject to

the following constraints:

zm = FT (xm − µ),F ∈ <D×K , FTF = I,
M∑

m=1

zi ,mzj ,m = 0

All of these constraints are satisfied if we set the feature vectors,
fi , equal to any subset of the eigenvectors, ui . The eigenvectors
that maximize

∑
m

∑
i z

2
i ,m are those associated with the largest

eigenvalues:

1

M − 1

M∑
m=1

K∑
i=1

z2i ,m =
K∑
i=1

λi



Review Non-Diagonal Covariance Eigenvectors NN PCA PCA Features Gram Summary

Energy spectrum=Fraction of energy explained

The “energy spectrum” is energy as a function of basis vector
index. There are a few ways we could define it, but one useful
definition is:

E [k] =

∑M
m=1

∑k
i=1 y

2
i ,m∑M

m=1

∑D
i=1 y

2
i ,m

=

∑k
i=1 λi∑D
i=1 λi

In words, E [k] is the fraction of the sample variance that is
captured by a feature embedding consisting of the first k principal
components.
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Energy spectrum=Fraction of energy explained
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Gram matrix

S = XXT is usually called
the sum-of-squares matrix.

1
M−1S is the sample
covariance.

G = XTX is called the gram
matrix. Its (i , j)th element is
the dot product between the
i th and j th data samples:

gi ,j = (xi − µ)T (xj − µ)

Gram matrix
g01 = (x0 − µ)T (x1 − µ)
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Eigenvectors of the Gram matrix

G is also symmetric and positive
semidefinitex! So it has
orthonormal eigenvectors:

G = VΛVT

VVT = VTV = I

Surprising Fact: G and S have
the same eigenvalues, but
different eigenvectors (U vs. V).
For this part of the lecture, let’s
say that Λ are the eigenvalues of
the sum-of-squares matrix, which
are also the eigenvalues of the
gram matrix.

Gram matrix
g1,2 = (x1 − µ)T (x2 − µ)
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Why the Gram matrix is useful:

Suppose that D ∼ 240000 pixels per image, but M ∼ 240 different
images. Then,

S is a 240000× 240000 matrix, and finding its eigenvectors is
an O

{
(240000)3

}
operation.

G is a 240× 240 matrix, and finding its eigenvectors is an
O
{

(240000)3
}

operation.
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Singular Value Decomposition

Suppose that X ∈ <D×M and

V = [v1, . . . , vD ] are the eigenvectors of G = XTX, and λi are
its eigenvalues, of which at most min(M,K ) are nonzero.

U = [u1, . . . ,uM ] are the eigenvectors of S = XXT , and λi
are its eigenvalues, of which at most min(M,K ) are nonzero.
Then:

X = UΛ1/2VT ,

where Λ1/2 is a D ×M diagonal matrix with the singular values,

λ
1/2
i , on the diagonal.
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How to find the principal components from the
eigenvectors of the gram matrix

Suppose you’ve computed the eigenvectors of the gram
matrix, V, and you want to find the principal component
directions, U. How can you do that?

Answer: multiply by the data matrix, X, then divide by the
singular values:

XVΛ−1/2 = UΛ1/2VTVΛ−1/2

= UΛ1/2Λ−1/2

= U
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How to find the principal components directly from the
data matrix, without ever computing either the sample
covariance matrix or the gram matrix

Use np.linalg.svd(X). This function will:

Check whether X has more rows or more columns.

Depending on the answer, find eigenvalues and eigenvectors of
either XTX or XXT .

Find the other set of eigenvectors using one of the following
two equations:

U = XVΛ−1/2, or

V = XTUΛ−1/2
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Summary

Symmetric positive semidefinite matrices:

A = UΛUT , UTAU = Λ, UTU = UUT = I

Centered dataset:

X = [x1 − µ, . . . , xM − µ]

Singular value decomposition:

X = UΛ1/2VT

where V are eigenvectors of the gram matrix, U are
eigenvectors of the covariance matrix, and Λ are their shared
eigenvalues.

The principal components are the first K elements of
y = UT (x− µ). Principal component analysis maximizes the
variance of y subject to the constraints that each dimension is
a linearly independent orthonormal projection of x.
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