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Gaussian (Normal) pdf

Gauss considered this problem: under what circumstances
does it make sense to estimate the mean of a distribution, µ,
by taking the average of the experimental values,
m = 1

n

∑n
i=1 xi?

He demonstrated that m is the maximum likelihood estimate
of µ if (not only if!) X is distributed with the following
probability density:

pX (x) =
1√

2πσ2
e−

1
2( x−µ

σ )
2
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Gaussian pdf
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Unit Normal pdf

Suppose that X is normal with mean µ and standard deviation σ
(variance σ2):

pX (x) = N (x ;µ, σ2) =
1√

2πσ2
e−

1
2( x−µ

σ )
2

Then U =
(
X−µ
σ

)
is normal with mean 0 and standard deviation 1:

pU(u) = N (u; 0, 1) =
1√
2π

e−
1
2
u2
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Central Limit Theorem

The Gaussian pdf is important because of the Central Limit
Theorem. Suppose Xi are i.i.d. (independent and identically
distributed), each having mean µ and variance σ2. Then
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Brownian motion

The Central Limit Theorem
matters because Einstein showed
that the movement of molecules,
in a liquid or gas, is the sum of n
i.i.d. molecular collisions.
In other words, the position after
t seconds is Gaussian, with mean
0, and with a variance of Dt,
where D is some constant.
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White Noise

Sound = air pressure
fluctuations caused by
velocity of air molecules

Velocity of warm air
molecules without any
external sound source =
Gaussian

Therefore:

Sound produced by warm air
molecules without any
external sound source =
Gaussian noise

Electrical signals: same.

https://commons.wikimedia.

org/wiki/File:

White_noise.svg
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White Noise

White Noise = noise in
which each sample of the
signal, xn, is i.i.d.

Why “white”? Because the
Fourier transform, X (ω), is
a zero-mean random
variable whose variance is
independent of frequency
(“white”)

Gaussian White Noise: x [n]
are i.i.d. and Gaussian

https://commons.wikimedia.

org/wiki/File:

White_noise.svg

https://commons.wikimedia.org/wiki/File:White_noise.svg
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Vector of Independent Gaussian Variables

Suppose we have a frame containing D samples from a Gaussian
white noise process, x1, . . . , xD . Let’s stack them up to make a
vector:

x =

 x1
...
xD


This whole frame is random. In fact, we could say that x is a
sample value for a Gaussian random vector called X , whose
elements are X1, . . . ,XD :

X =

 X1
...

XD


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Vector of Independent Gaussian Variables

Suppose that the N samples are i.i.d., each one has the same
mean, µ, and the same variance, σ2. Then the pdf of this random
vector is

pX (x) = N (x;µ, σ2I) =
D∏
i=1

1√
2πσ2

e
− 1

2

(
xi−µ

σ

)2
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Vector of Independent Gaussian Variables

Here’s an example from
Wikipedia with a mean of about
50 and a standard deviation of
about 12.

https://commons.wikimedia.

org/wiki/File:

Multivariate_Gaussian.png
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Independent Gaussians that aren’t identically distributed

Suppose that the N samples are independent Gaussians that aren’t
identically distributed, i.e., Xi has mean µi and variance σ2i . Then
the pdf of this random vector is

pX (x) = N (x;µ,Σ)
D∏
i=1

1√
2πσ2d

e
− 1

2

(
xi−µi
σi

)2

where µ and Σ are the mean vector and covariance matrix:

µ =

 µ1
...
µD

 , Σ =

 σ21 0 · · ·
0 σ22 · · ·
...

...
. . .


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Independent Gaussians that aren’t identically distributed

Anpther useful form is:

pX (x) =
D∏
i=1

1√
2πσ2d

e
− 1

2

(
xi−µi
σi

)2

=
1

(2π)D/2
∏D

i=1 σd
e
− 1

2

∑d
i=1

(
xd−µd

σd

)2
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Example

Suppose that µ1 = 1, µ2 = −1, σ21 = 1, and σ22 = 4. Then

pX (x) =
2∏

i=1

1√
2πσ2d

e
− 1

2

(
xi−µi
σi

)2
=

1

4π
e
− 1

2

(
(x1−1)2+

(
x2+1
2

)2)

The pdf has its maximum value, pX (x) = 1
4π , at x = µ =

[
1
−1

]
.

It drops to pX (x) = 1
4π
√
e

at x =

[
µ1 ± σ1
µ2

]
and at

x =

[
µ1

µ2 ± σ2

]
. It drops to pX (x) = 1

4πe2
at x =

[
µ1 ± 2σ1

µ2

]
and at x =

[
µ1

µ2 ± 2σ2

]
.
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Example
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Facts about linear algebra #1: determinant of a diagonal
matrix

Suppose that Σ is a diagonal matrix, with variances on the
diagonal:

Σ =

 σ21 0 · · ·
0 σ22 · · ·
...

...
. . .


Then its determinant is

|Σ| =
D∏
i=1

σ2d

So we can write the Gaussian pdf as

pX (x) =
1

|2πΣ|1/2
e
− 1

2

∑d
i=1

(
xd−µd

σd

)2
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Facts about linear algebra #2: inverse of a diagonal matrix

Suppose that Σ is a diagonal matrix, with variances on the
diagonal:

Σ =

 σ21 0 · · ·
0 σ22 · · ·
...

...
. . .


Then its inverse is:

Σ−1 =


1
σ2
1

0 · · ·
0 1

σ2
2
· · ·

...
...

. . .


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Facts about linear algebra #3: weighted distance

Suppose that

x =

 x1
...
xD

 , µ =

 µ1
...
µD

 , Σ =

 σ21 0 · · ·
0 σ22 · · ·
...

...
. . .


Then

D∑
i=1

(
xi − µi
σi

)2

= [x1 − µ1, x2 − µ2, . . .]


1
σ2
1

0 · · ·
0 1

σ2
2
· · ·

...
...

. . .


 x1 − µ1

x2 − µ2
...


= (x− µ)TΣ−1(x− µ)
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Mahalanobis distance: Diagonal covariance

The Mahalanobis distance
between vectors x and µ,
weighted by covariance matrix Σ,
is defined to be

dΣ(x,µ) =
√

(x− µ)TΣ−1(x− µ)

If Σ is a diagonal matrix, the
Mahalanobis distance is

dΣ(x,µ) =
D∑
i=1

(
xi − µi
σi

)2

The contour lines of equal
Mahalanobis distance are ellipses.

https://commons.wikimedia.

org/wiki/File:

Multivariate_Gaussian.png

https://commons.wikimedia.org/wiki/File:Multivariate_Gaussian.png
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Independent Gaussians that aren’t identically distributed

So if we have independent Gaussians that aren’t identically
distributed, we can write the pdf as

pX (x) =
1

(2π)D/2
∏D

i=1 σi
e
− 1

2

∑D
i=1

(
xi−µi
σi

)2

or as

pX (x) =
1

|2πΣ|1/2
e−

1
2
(x−µ)T Σ−1(x−µ)

or as

pX (x) =
1

|2πΣ|1/2
e−

1
2
d2

Σ(x,µ)
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Review: HMM with Discrete Observations

1 Initial State Probabilities:

π′i =
E [# state sequences that start with q1 = i ]

# state sequences in training data

2 Transition Probabilities:

π′i =
E [# frames in which qt−1 = i , qt = j ]

E [# frames in which qt−1 = i ]

3 Observation Probabilities:

b′j(k) =
E [# frames in which qt = j , kt = k]

E [# frames in which qt = j ]
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Baum-Welch with Gaussian Probabilities

The requirement that we vector-quantize the observations is a
problem. It means that we can’t model the observations very
precisely.
It would be better if we could model the observation likelihood,
bj(x), as a probability density in the space x ∈ <D . One way is to
use a parameterized function that is guaranteed to be a properly
normalized pdf. For example, a Gaussian:

bi (x) = N (x;µi ,Σi )
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Diagonal-Covariance Gaussian pdf

Let’s assume the feature vector has D dimensions,
xt = [xt,1, . . . , xt,D ]. The Gaussian pdf is

bi (xt) =
1

(2π)D/2|Σi |1/2
e−

1
2
(xt−µi )Σ

−1
i (xt−µi )

T

The logarithm of a Gaussian is

ln bi (xt) = −1

2

(
(xt − µi )

TΣ−1i (xt − µi ) + ln |Σi |+ C
)

where the constant is C = D ln(2π).
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Baum-Welch

Baum-Welch maximizes the expected log probability, i.e.,

Eq|X [ln bi (xt)] = −1

2

N∑
i=1

γt(i)
(

(xt − µi )
TΣ−1i (xt − µi ) + ln |Σi |+ C

)
If we include all of the frames, then we get

Eq|X [ln p(X,q|Λ)] = other terms

− 1

2

T∑
t=1

N∑
i=1

γt(i)
(

(xt − µi )
TΣ−1i (xt − µi ) + ln |Σi |+ C

)
where the “other terms” are about ai ,j and πi , and have nothing to
do with µi or Σi .



Gaussians Gaussian Vector HMM Summary

M-Step: optimum µ

First, let’s optimize µ. We want

0 =
∂

∂µq

T∑
t=1

N∑
i=1

γt(i)(xt − µi )
TΣ−1i (xt − µi )

Re-arranging terms, we get

µ′q =

∑T
t=1 γt(q)xt∑T
t=1 γt(q)
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M-Step: optimum Σ

Second, let’s optimize Σi . For this, it’s easier to express the log
likelihood as

Eq|X [ln pX (X,q)] = other stuff− 1

2

T∑
t=1

γt(i)
D∑

d=1

(
lnσ2i ,d +

(xt,d − µi ,d)2

σ2i ,d

)

Its scalar derivative is

∂Eq|X [ln pX (X,q)]

∂σ2i ,d
= −1

2

T∑
t=1

γt(i)

(
1

σ2i ,d
−

(xt,d − µi ,d)2

σ4i ,d

)

Which we can solve to find

σ2i ,d =

∑T
t=1 γt(i)(xt,d − µt,d)2∑T

t=1 γt(i)
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Minimizing the cross-entropy: optimum σ

Arranging all the scalar derivatives into a matrix, we can write

Σ′i =

∑T
t=1 γt(i)(xt − µi )(xt − µi )

T∑T
t=1 γt(i)

Actually, the above formula holds even if the Gaussian has a
non-diagonal covariance matrix, but Gaussians with
non-diagonal covariance matrices work surprisingly badly in
HMMs.

For a diagonal-covariance Gaussian, we evaluate only the
diagonal elements of the vector outer product
(xt − µi )(xt − µi )

T
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Summary: Gaussian Observation PDFs

So we can use Gaussians for bj(x):

E-Step:

γt(i) =
αt(i)βt(i)∑
i ′ αt(i ′)βt(i ′)

M-Step:

µ′i =

∑T
t=1 γt(i)xt∑T
t=1 γt(i)

Σ′i =

∑T
t=1 γt(i)(xt − µi )(xt − µi )

T∑T
t=1 γt(i)



Gaussians Gaussian Vector HMM Summary

Outline

1 Gaussians, Brownian motion, and white noise

2 Gaussian Random Vector

3 HMM with Gaussian Observation Probabilities

4 Summary



Gaussians Gaussian Vector HMM Summary

Summary: Independent Gaussians that aren’t identically
distributed

pX (x) =
1

(2π)D/2
∏D

i=1 σi
e
− 1

2

∑D
i=1

(
xi−µi
σi

)2

=
1

|2πΣ|1/2
e−

1
2
(x−µ)T Σ−1(x−µ)

=
1

|2πΣ|1/2
e−

1
2
d2

Σ(x,µ)



Gaussians Gaussian Vector HMM Summary

Summary: Gaussian Observation PDFs

So we can use Gaussians for bj(x):

E-Step:

γt(i) =
αt(i)βt(i)∑
i ′ αt(i ′)βt(i ′)

M-Step:

µ′i =

∑T
t=1 γt(i)xt∑T
t=1 γt(i)

Σ′i =

∑T
t=1 γt(i)(xt − µi )(xt − µi )

T∑T
t=1 γt(i)
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