Gaussians and Continuous-Density HMMs

Mark Hasegawa-Johnson
These slides are in the public domain

ECE 417: Multimedia Signal Processing
(1) Gaussians, Brownian motion, and white noise
(2) Gaussian Random Vector
(3) HMM with Gaussian Observation Probabilities
(4) Summary

Outline

(1) Gaussians, Brownian motion, and white noise

(2) Gaussian Random Vector

3) HMM with Gaussian Observation Probabilities
(4) Summary

Gaussian (Normal) pdf

- Gauss considered this problem: under what circumstances does it make sense to estimate the mean of a distribution, μ, by taking the average of the experimental values, $m=\frac{1}{n} \sum_{i=1}^{n} x_{i}$?
- He demonstrated that m is the maximum likelihood estimate of μ if (not only if!) X is distributed with the following probability density:

$$
p_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

Gaussian pdf

https://commons.wikimedia.org/wiki/File:
Boxplot_vs_PDF.svg

Unit Normal pdf

Suppose that X is normal with mean μ and standard deviation σ (variance σ^{2}):

$$
p_{X}(x)=\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

Then $U=\left(\frac{X-\mu}{\sigma}\right)$ is normal with mean 0 and standard deviation 1 :

$$
p_{U}(u)=\mathcal{N}(u ; 0,1)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} u^{2}}
$$

Central Limit Theorem

The Gaussian pdf is important because of the Central Limit Theorem. Suppose X_{i} are i.i.d. (independent and identically distributed), each having mean μ and variance σ^{2}. Then

Brownian motion

The Central Limit Theorem matters because Einstein showed that the movement of molecules, in a liquid or gas, is the sum of n i.i.d. molecular collisions.

In other words, the position after t seconds is Gaussian, with mean 0 , and with a variance of $D t$, where D is some constant.

Brownianmotion5particles150fra gif

White Noise

- Sound = air pressure fluctuations caused by velocity of air molecules
- Velocity of warm air molecules without any external sound source $=$ Gaussian

Therefore:

- Sound produced by warm air molecules without any external sound source $=$ Gaussian noise
- Electrical signals: same.

White Noise

- White Noise = noise in which each sample of the signal, x_{n}, is i.i.d.
- Why "white"? Because the Fourier transform, $X(\omega)$, is
a zero-mean random variable whose variance is independent of frequency ("white")
- Gaussian White Noise: x[n] are i.i.d. and Gaussian

https://commons.wikimedia. org/wiki/File:
White_noise.svg

Outline

(1) Gaussians, Brownian motion, and white noise
(2) Gaussian Random Vector
(3) HMM with Gaussian Observation Probabilities
4. Summary

Vector of Independent Gaussian Variables

Suppose we have a frame containing D samples from a Gaussian white noise process, x_{1}, \ldots, x_{D}. Let's stack them up to make a vector:

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{D}
\end{array}\right]
$$

This whole frame is random. In fact, we could say that \mathbf{x} is a sample value for a Gaussian random vector called X, whose elements are X_{1}, \ldots, X_{D} :

$$
X=\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{D}
\end{array}\right]
$$

Vector of Independent Gaussian Variables

Suppose that the N samples are i.i.d., each one has the same mean, μ, and the same variance, σ^{2}. Then the pdf of this random vector is

$$
p_{X}(\mathbf{x})=\mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}, \sigma^{2} \mathbf{I}\right)=\prod_{i=1}^{D} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}}
$$

Vector of Independent Gaussian Variables

Here's an example from
Wikipedia with a mean of about 50 and a standard deviation of about 12 .

https://commons.wikimedia. org/wiki/File:
Multivariate_Gaussian.png

Independent Gaussians that aren't identically distributed

Suppose that the N samples are independent Gaussians that aren't identically distributed, i.e., X_{i} has mean μ_{i} and variance σ_{i}^{2}. Then the pdf of this random vector is

$$
p_{X}(\mathbf{x})=\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \prod_{i=1}^{D} \frac{1}{\sqrt{2 \pi \sigma_{d}^{2}}} e^{-\frac{1}{2}\left(\frac{x_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}}
$$

where $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are the mean vector and covariance matrix:

$$
\boldsymbol{\mu}=\left[\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{D}
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\sigma_{1}^{2} & 0 & \cdots \\
0 & \sigma_{2}^{2} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

Independent Gaussians that aren't identically distributed

Anpther useful form is:

$$
\begin{aligned}
p_{X}(\mathbf{x}) & =\prod_{i=1}^{D} \frac{1}{\sqrt{2 \pi \sigma_{d}^{2}}} e^{-\frac{1}{2}\left(\frac{x_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}} \\
& =\frac{1}{(2 \pi)^{D / 2} \prod_{i=1}^{D} \sigma_{d}} e^{-\frac{1}{2} \sum_{i=1}^{d}\left(\frac{x_{d}-\mu_{d}}{\sigma_{d}}\right)^{2}}
\end{aligned}
$$

Example

Suppose that $\mu_{1}=1, \mu_{2}=-1, \sigma_{1}^{2}=1$, and $\sigma_{2}^{2}=4$. Then

$$
p_{X}(\mathbf{x})=\prod_{i=1}^{2} \frac{1}{\sqrt{2 \pi \sigma_{d}^{2}}} e^{-\frac{1}{2}\left(\frac{x_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}}=\frac{1}{4 \pi} e^{-\frac{1}{2}\left(\left(x_{1}-1\right)^{2}+\left(\frac{x_{2}+1}{2}\right)^{2}\right)}
$$

The pdf has its maximum value, $p_{X}(\mathbf{x})=\frac{1}{4 \pi}$, at $\mathbf{x}=\boldsymbol{\mu}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
It drops to $p_{X}(\mathbf{x})=\frac{1}{4 \pi \sqrt{e}}$ at $\mathbf{x}=\left[\begin{array}{c}\mu_{1} \pm \sigma_{1} \\ \mu_{2}\end{array}\right]$ and at
$\mathbf{x}=\left[\begin{array}{c}\mu_{1} \\ \mu_{2} \pm \sigma_{2}\end{array}\right]$. It drops to $p_{X}(\mathbf{x})=\frac{1}{4 \pi e^{2}}$ at $\mathbf{x}=\left[\begin{array}{c}\mu_{1} \pm 2 \sigma_{1} \\ \mu_{2}\end{array}\right]$
and at $\mathbf{x}=\left[\begin{array}{c}\mu_{1} \\ \mu_{2} \pm 2 \sigma_{2}\end{array}\right]$.

Example

Contour Lines of Diagonal Covariance Gaussian

Facts about linear algebra \#1: determinant of a diagonal matrix

Suppose that $\boldsymbol{\Sigma}$ is a diagonal matrix, with variances on the diagonal:

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\sigma_{1}^{2} & 0 & \cdots \\
0 & \sigma_{2}^{2} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

Then its determinant is

$$
|\boldsymbol{\Sigma}|=\prod_{i=1}^{D} \sigma_{d}^{2}
$$

So we can write the Gaussian pdf as

$$
p_{X}(\mathbf{x})=\frac{1}{|2 \pi \boldsymbol{\Sigma}|^{1 / 2}} e^{-\frac{1}{2} \sum_{i=1}^{d}\left(\frac{x_{d}-\mu_{d}}{\sigma_{d}}\right)^{2}}
$$

Facts about linear algebra \#2: inverse of a diagonal matrix

Suppose that $\boldsymbol{\Sigma}$ is a diagonal matrix, with variances on the diagonal:

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\sigma_{1}^{2} & 0 & \cdots \\
0 & \sigma_{2}^{2} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

Then its inverse is:

$$
\boldsymbol{\Sigma}^{-1}=\left[\begin{array}{ccc}
\frac{1}{\sigma_{1}^{2}} & 0 & \cdots \\
0 & \frac{1}{\sigma_{2}^{2}} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

Facts about linear algebra \#3: weighted distance

Suppose that

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{D}
\end{array}\right], \quad \boldsymbol{\mu}=\left[\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{D}
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\sigma_{1}^{2} & 0 & \cdots \\
0 & \sigma_{2}^{2} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

Then

$$
=(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})
$$

Mahalanobis distance: Diagonal covariance

The Mahalanobis distance between vectors \mathbf{x} and $\boldsymbol{\mu}$, weighted by covariance matrix $\boldsymbol{\Sigma}$, is defined to be

$$
d_{\Sigma}(\mathbf{x}, \boldsymbol{\mu})=\sqrt{(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu)}
$$

If $\boldsymbol{\Sigma}$ is a diagonal matrix, the Mahalanobis distance is

$$
d_{\boldsymbol{\Sigma}}(\mathbf{x}, \boldsymbol{\mu})=\sum_{i=1}^{D}\left(\frac{x_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}
$$

The contour lines of equal Mahalanobis distance are ellipses.

https://commons.wikimedia. org/wiki/File:
Multivariate_Gaussian.png

Independent Gaussians that aren't identically distributed

So if we have independent Gaussians that aren't identically distributed, we can write the pdf as

$$
p_{X}(\mathbf{x})=\frac{1}{(2 \pi)^{D / 2} \prod_{i=1}^{D} \sigma_{i}} e^{-\frac{1}{2} \sum_{i=1}^{D}\left(\frac{x_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}}
$$

or as

$$
p_{X}(\mathbf{x})=\frac{1}{|2 \pi \boldsymbol{\Sigma}|^{1 / 2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

or as

$$
p_{X}(\mathbf{x})=\frac{1}{|2 \pi \boldsymbol{\Sigma}|^{1 / 2}} e^{-\frac{1}{2} d \frac{2}{\boldsymbol{\Sigma}}(\mathbf{x}, \boldsymbol{\mu})}
$$

Outline

(1) Gaussians, Brownian motion, and white noise
(2) Gaussian Random Vector
(3) HMM with Gaussian Observation Probabilities
4. Summary

Review: HMM with Discrete Observations

(1) Initial State Probabilities:

$$
\pi_{i}^{\prime}=\frac{E\left[\# \text { state sequences that start with } q_{1}=i\right]}{\# \text { state sequences in training data }}
$$

(2) Transition Probabilities:

$$
\pi_{i}^{\prime}=\frac{E\left[\# \text { frames in which } q_{t-1}=i, q_{t}=j\right]}{E\left[\# \text { frames in which } q_{t-1}=i\right]}
$$

(3) Observation Probabilities:

$$
b_{j}^{\prime}(k)=\frac{E\left[\# \text { frames in which } q_{t}=j, k_{t}=k\right]}{E\left[\# \text { frames in which } q_{t}=j\right]}
$$

Baum-Welch with Gaussian Probabilities

The requirement that we vector-quantize the observations is a problem. It means that we can't model the observations very precisely.
It would be better if we could model the observation likelihood, $b_{j}(\mathbf{x})$, as a probability density in the space $\mathbf{x} \in \Re^{D}$. One way is to use a parameterized function that is guaranteed to be a properly normalized pdf. For example, a Gaussian:

$$
b_{i}(\mathbf{x})=\mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right)
$$

Diagonal-Covariance Gaussian pdf

Let's assume the feature vector has D dimensions, $\mathbf{x}_{t}=\left[x_{t, 1}, \ldots, x_{t, D}\right]$. The Gaussian pdf is

$$
b_{i}\left(\mathbf{x}_{t}\right)=\frac{1}{(2 \pi)^{D / 2}\left|\boldsymbol{\Sigma}_{i}\right|^{1 / 2}} e^{-\frac{1}{2}\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right) \boldsymbol{\Sigma}_{i}^{-1}\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)^{T}}
$$

The logarithm of a Gaussian is

$$
\ln b_{i}\left(\mathbf{x}_{t}\right)=-\frac{1}{2}\left(\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)^{T} \boldsymbol{\Sigma}_{i}^{-1}\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)+\ln \left|\boldsymbol{\Sigma}_{i}\right|+C\right)
$$

where the constant is $C=D \ln (2 \pi)$.

Baum-Welch

Baum-Welch maximizes the expected log probability, i.e.,

$$
E_{\mathbf{q} \mid \mathbf{X}}\left[\ln b_{i}\left(\mathbf{x}_{t}\right)\right]=-\frac{1}{2} \sum_{i=1}^{N} \gamma_{t}(i)\left(\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)^{T} \boldsymbol{\Sigma}_{i}^{-1}\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)+\ln \left|\boldsymbol{\Sigma}_{i}\right|+C\right)
$$

If we include all of the frames, then we get

$$
\begin{aligned}
& E_{\mathbf{q} \mid \mathbf{X}}[\ln p(\mathbf{X}, \mathbf{q} \mid \Lambda)]=\text { other terms } \\
& -\frac{1}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i)\left(\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)^{T} \boldsymbol{\Sigma}_{i}^{-1}\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)+\ln \left|\boldsymbol{\Sigma}_{i}\right|+C\right)
\end{aligned}
$$

where the "other terms" are about $a_{i, j}$ and π_{i}, and have nothing to do with $\boldsymbol{\mu}_{i}$ or $\boldsymbol{\Sigma}_{i}$.

M-Step: optimum μ

First, let's optimize $\boldsymbol{\mu}$. We want

$$
0=\frac{\partial}{\partial \boldsymbol{\mu}_{q}} \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i)\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)^{T} \boldsymbol{\Sigma}_{i}^{-1}\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)
$$

Re-arranging terms, we get

$$
\boldsymbol{\mu}_{q}^{\prime}=\frac{\sum_{t=1}^{T} \gamma_{t}(q) \mathbf{x}_{t}}{\sum_{t=1}^{T} \gamma_{t}(q)}
$$

M-Step: optimum $\boldsymbol{\Sigma}$

Second, let's optimize $\boldsymbol{\Sigma}_{i}$. For this, it's easier to express the log likelihood as
$E_{\mathbf{q} \mid \mathbf{X}}\left[\ln p_{X}(\mathbf{X}, \mathbf{q})\right]=$ other stuff $-\frac{1}{2} \sum_{t=1}^{T} \gamma_{t}(i) \sum_{d=1}^{D}\left(\ln \sigma_{i, d}^{2}+\frac{\left(x_{t, d}-\mu_{i, d}\right)^{2}}{\sigma_{i, d}^{2}}\right.$
Its scalar derivative is

$$
\frac{\partial E_{\mathbf{q} \mid \mathbf{X}}\left[\ln p_{X}(\mathbf{X}, \mathbf{q})\right]}{\partial \sigma_{i, d}^{2}}=-\frac{1}{2} \sum_{t=1}^{T} \gamma_{t}(i)\left(\frac{1}{\sigma_{i, d}^{2}}-\frac{\left(x_{t, d}-\mu_{i, d}\right)^{2}}{\sigma_{i, d}^{4}}\right)
$$

Which we can solve to find

$$
\sigma_{i, d}^{2}=\frac{\sum_{t=1}^{T} \gamma_{t}(i)\left(x_{t, d}-\mu_{t, d}\right)^{2}}{\sum_{t=1}^{T} \gamma_{t}(i)}
$$

Minimizing the cross-entropy: optimum σ

Arranging all the scalar derivatives into a matrix, we can write

$$
\boldsymbol{\Sigma}_{i}^{\prime}=\frac{\sum_{t=1}^{T} \gamma_{t}(i)\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)^{T}}{\sum_{t=1}^{T} \gamma_{t}(i)}
$$

- Actually, the above formula holds even if the Gaussian has a non-diagonal covariance matrix, but Gaussians with non-diagonal covariance matrices work surprisingly badly in HMMs.
- For a diagonal-covariance Gaussian, we evaluate only the diagonal elements of the vector outer product $\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)^{T}$

Summary: Gaussian Observation PDFs

So we can use Gaussians for $b_{j}(\mathbf{x})$:

- E-Step:

$$
\gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{i^{\prime}} \alpha_{t}\left(i^{\prime}\right) \beta_{t}\left(i^{\prime}\right)}
$$

- M-Step:

$$
\begin{gathered}
\boldsymbol{\mu}_{i}^{\prime}=\frac{\sum_{t=1}^{T} \gamma_{t}(i) \mathbf{x}_{t}}{\sum_{t=1}^{T} \gamma_{t}(i)} \\
\boldsymbol{\Sigma}_{i}^{\prime}=\frac{\sum_{t=1}^{T} \gamma_{t}(i)\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)^{T}}{\sum_{t=1}^{T} \gamma_{t}(i)}
\end{gathered}
$$

Outline

(1) Gaussians, Brownian motion, and white noise

(2) Gaussian Random Vector
3) HMM with Gaussian Observation Probabilities
(4) Summary

Summary: Independent Gaussians that aren't identically distributed

$$
\begin{aligned}
p_{X}(\mathbf{x}) & =\frac{1}{(2 \pi)^{D / 2} \prod_{i=1}^{D} \sigma_{i}} e^{-\frac{1}{2} \sum_{i=1}^{D}\left(\frac{x_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}} \\
& =\frac{1}{\mid 2 \pi \boldsymbol{\Sigma} \boldsymbol{|}^{1 / 2}} e^{-\frac{1}{2}(x-\mu)^{T} \boldsymbol{\Sigma}^{-1}(x-\mu)} \\
& =\frac{1}{|2 \pi \boldsymbol{\Sigma}|^{1 / 2}} e^{-\frac{1}{2} d_{\boldsymbol{\Sigma}}^{2}(x, \mu)}
\end{aligned}
$$

Summary: Gaussian Observation PDFs

So we can use Gaussians for $b_{j}(\mathbf{x})$:

- E-Step:

$$
\gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{i^{\prime}} \alpha_{t}\left(i^{\prime}\right) \beta_{t}\left(i^{\prime}\right)}
$$

- M-Step:

$$
\begin{gathered}
\boldsymbol{\mu}_{i}^{\prime}=\frac{\sum_{t=1}^{T} \gamma_{t}(i) \mathbf{x}_{t}}{\sum_{t=1}^{T} \gamma_{t}(i)} \\
\boldsymbol{\Sigma}_{i}^{\prime}=\frac{\sum_{t=1}^{T} \gamma_{t}(i)\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{i}\right)^{T}}{\sum_{t=1}^{T} \gamma_{t}(i)}
\end{gathered}
$$

