▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Gaussians and Continuous-Density HMMs

Mark Hasegawa-Johnson These slides are in the public domain

ECE 417: Multimedia Signal Processing

Gaussians Gau	ussian Vector I	HMM	Summary

1 Gaussians, Brownian motion, and white noise

2 Gaussian Random Vector

3 HMM with Gaussian Observation Probabilities

1 Gaussians, Brownian motion, and white noise

2 Gaussian Random Vector

B HMM with Gaussian Observation Probabilities

- Gauss considered this problem: under what circumstances does it make sense to estimate the mean of a distribution, μ , by taking the average of the experimental values, $m = \frac{1}{n} \sum_{i=1}^{n} x_i$?
- He demonstrated that *m* is the maximum likelihood estimate of μ if (not only if!) *X* is distributed with the following probability density:

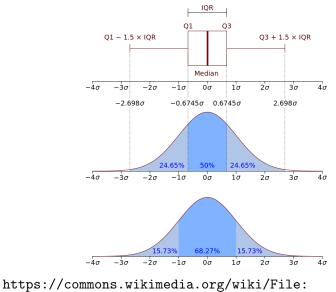
$$p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Gaussians

Gaussian Vector

HMM 000000000 Summary 000

Gaussian pdf



https://commons.wikimedia.org/wiki/File: Boxplot_vs_PDF.svg

Gaussians	Gaussian Vector	HMM	Summary
○00●0000	000000000000	00000000	000
Unit Normal pd	f		

Suppose that X is normal with mean μ and standard deviation σ (variance σ^2):

$$p_X(x) = \mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Then $U = \left(\frac{X-\mu}{\sigma}\right)$ is normal with mean 0 and standard deviation 1:

$$p_U(u) = \mathcal{N}(u; 0, 1) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2}$$

The Gaussian pdf is important because of the Central Limit Theorem. Suppose X_i are i.i.d. (independent and identically distributed), each having mean μ and variance σ^2 . Then

 $\sqrt{n} \left(\left(\frac{1}{n} \sum_{i=1}^{n} X_i \right) - \mu \right) \stackrel{d}{\rightarrow} N\left(0, \sigma^2\right).$ The case $\sigma > 0$, convergence in distribution means that the formula of the product of the convergence in the case $\sigma > 0$.

HMM 000000000

Brownian motion

The Central Limit Theorem matters because Einstein showed that the movement of molecules, in a liquid or gas, is the sum of n i.i.d. molecular collisions. In other words, the position after t seconds is Gaussian, with mean 0, and with a variance of Dt, where D is some constant.

https://commons.wikimedia. org/wiki/File: Brownianmotion5particles150fra gif Gaussians

Gaussian Vector

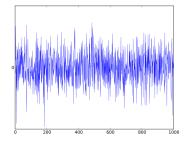
HMM 000000000

White Noise

- Sound = air pressure fluctuations caused by velocity of air molecules
- Velocity of warm air molecules without any external sound source = Gaussian

Therefore:

- Sound produced by warm air molecules without any external sound source = Gaussian noise
- Electrical signals: same.



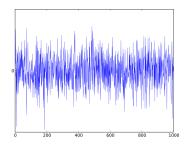
https://commons.wikimedia. org/wiki/File: White_noise.svg Gaussians

Gaussian Vector

HMM 000000000 Summary 000

White Noise

- White Noise = noise in which each sample of the signal, x_n, is i.i.d.
- Why "white"? Because the Fourier transform, X(ω), is a zero-mean random variable whose variance is independent of frequency ("white")
- Gaussian White Noise: x[n] are i.i.d. and Gaussian



https://commons.wikimedia.
org/wiki/File:
White_noise.svg

HMM 000000000

Gaussians, Brownian motion, and white noise

2 Gaussian Random Vector

3 HMM with Gaussian Observation Probabilities

Gaussians		Gaussian Vector	HMM	Summary
00000000		○●000000000000	00000000	000
N /	C 1 1			

Vector of Independent Gaussian Variables

Suppose we have a frame containing *D* samples from a Gaussian white noise process, x_1, \ldots, x_D . Let's stack them up to make a vector:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_D \end{bmatrix}$$

This whole frame is random. In fact, we could say that **x** is a sample value for a Gaussian random vector called X, whose elements are X_1, \ldots, X_D :

$$X = \left[\begin{array}{c} X_1 \\ \vdots \\ X_D \end{array} \right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Gaussians	Gaussian Vector	HMM	Summary
00000000	○0●0000000000	00000000	000
N /		• • • • • • •	

Vector of Independent Gaussian Variables

Suppose that the N samples are i.i.d., each one has the same mean, μ , and the same variance, σ^2 . Then the pdf of this random vector is

$$p_X(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \sigma^2 \mathbf{I}) = \prod_{i=1}^{D} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{x_i - \mu}{\sigma}\right)^2}$$

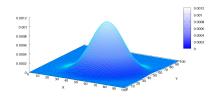
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Gaussians
 Gaussian Vector
 HMM
 Summary

 00000000
 0000000000
 000000000
 000

Vector of Independent Gaussian Variables

Here's an example from Wikipedia with a mean of about 50 and a standard deviation of about 12.



Multivariate Normal Distribution

https://commons.wikimedia. org/wiki/File: Multivariate_Gaussian.png

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Suppose that the N samples are independent Gaussians that aren't identically distributed, i.e., X_i has mean μ_i and variance σ_i^2 . Then the pdf of this random vector is

$$p_X(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \prod_{i=1}^{D} \frac{1}{\sqrt{2\pi\sigma_d^2}} e^{-\frac{1}{2} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2}$$

where μ and Σ are the mean vector and covariance matrix:

$$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_D \end{bmatrix}, \quad \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & 0 & \cdots \\ 0 & \sigma_2^2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Gaussian Vector
 HMM
 Summary

 Occorr
 Occorr
 Occorr
 Occorr

 Independent Gaussians that aren't identically distributed

Anpther useful form is:

$$p_X(\mathbf{x}) = \prod_{i=1}^{D} \frac{1}{\sqrt{2\pi\sigma_d^2}} e^{-\frac{1}{2} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2} \\ = \frac{1}{(2\pi)^{D/2} \prod_{i=1}^{D} \sigma_d} e^{-\frac{1}{2} \sum_{i=1}^{d} \left(\frac{x_d - \mu_d}{\sigma_d}\right)^2}$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Gaussians	Gaussian Vector	HMM	Summary
00000000	○00000000000	00000000	000

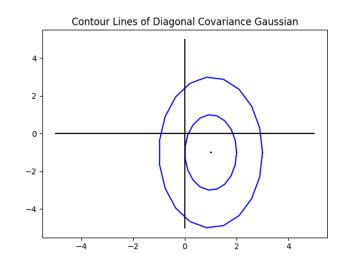
Suppose that
$$\mu_1=$$
 1, $\mu_2=-$ 1, $\sigma_1^2=$ 1, and $\sigma_2^2=$ 4. Then

$$p_X(\mathbf{x}) = \prod_{i=1}^2 \frac{1}{\sqrt{2\pi\sigma_d^2}} e^{-\frac{1}{2}\left(\frac{x_i - \mu_i}{\sigma_i}\right)^2} = \frac{1}{4\pi} e^{-\frac{1}{2}\left((x_1 - 1)^2 + \left(\frac{x_2 + 1}{2}\right)^2\right)}$$

The pdf has its maximum value,
$$p_X(\mathbf{x}) = \frac{1}{4\pi}$$
, at $\mathbf{x} = \boldsymbol{\mu} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.
It drops to $p_X(\mathbf{x}) = \frac{1}{4\pi\sqrt{e}}$ at $\mathbf{x} = \begin{bmatrix} \mu_1 \pm \sigma_1 \\ \mu_2 \end{bmatrix}$ and at
 $\mathbf{x} = \begin{bmatrix} \mu_1 \\ \mu_2 \pm \sigma_2 \end{bmatrix}$. It drops to $p_X(\mathbf{x}) = \frac{1}{4\pi e^2}$ at $\mathbf{x} = \begin{bmatrix} \mu_1 \pm 2\sigma_1 \\ \mu_2 \end{bmatrix}$
and at $\mathbf{x} = \begin{bmatrix} \mu_1 \\ \mu_2 \pm 2\sigma_2 \end{bmatrix}$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Gaussians	Gaussian Vector	HMM	Summary
00000000	○000000000000	000000000	000
Example			



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Gaussians 00000000	Gaussian Vector	HMM 00000000	Summary 000
	inear algebra $\#$	1: determinant of a d	iagonal
matrix			

Suppose that $\pmb{\Sigma}$ is a diagonal matrix, with variances on the diagonal:

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \mathbf{0} & \cdots \\ \mathbf{0} & \sigma_2^2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

Then its determinant is

$$\mathbf{\Sigma}| = \prod_{i=1}^{D} \sigma_d^2$$

So we can write the Gaussian pdf as

$$p_X(\mathbf{x}) = \frac{1}{|2\pi\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}\sum_{i=1}^d \left(\frac{\mathbf{x}_d - \mu_d}{\sigma_d}\right)^2}$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Facts about	linear algebra #2	· inverse of a diagon	al matrix
	000000000000000000000000000000000000000		
Gaussians	Gaussian Vector	HMM	Summary

Suppose that $\pmb{\Sigma}$ is a diagonal matrix, with variances on the diagonal:

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \mathbf{0} & \cdots \\ \mathbf{0} & \sigma_2^2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

Then its inverse is:

$$\boldsymbol{\Sigma}^{-1} = \begin{bmatrix} \frac{1}{\sigma_1^2} & 0 & \cdots \\ 0 & \frac{1}{\sigma_2^2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Gaussians	Gaussian Vector	HMM	Summary
00000000	00000000000000	00000000	000
Facts about	linear algebra $#3$: weighted distance	

Suppose that

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_D \end{bmatrix}, \quad \boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_D \end{bmatrix}, \quad \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & 0 & \cdots \\ 0 & \sigma_2^2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

Then

$$\sum_{i=1}^{D} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2 = [x_1 - \mu_1, x_2 - \mu_2, \ldots] \begin{bmatrix} \frac{1}{\sigma_1^2} & 0 & \cdots \\ 0 & \frac{1}{\sigma_2^2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \\ \vdots \end{bmatrix}$$
$$= (\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu)$$

Gaussians	Gaussian Vector	HMM	Summary
00000000	○000000000000	00000000	000

Mahalanobis distance: Diagonal covariance

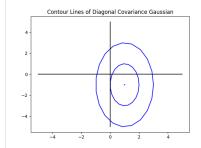
The Mahalanobis distance between vectors \mathbf{x} and $\boldsymbol{\mu}$, weighted by covariance matrix $\boldsymbol{\Sigma}$, is defined to be

$$d_{\mathbf{\Sigma}}(\mathbf{x}, oldsymbol{\mu}) = \sqrt{(\mathbf{x} - oldsymbol{\mu})^{ au} \mathbf{\Sigma}^{-1} (\mathbf{x} - oldsymbol{\mu})}$$

If **Σ** is a diagonal matrix, the Mahalanobis distance is

$$d_{\Sigma}(\mathbf{x}, \boldsymbol{\mu}) = \sum_{i=1}^{D} \left(\frac{x_i - \mu_i}{\sigma_i} \right)^2$$

The contour lines of equal Mahalanobis distance are ellipses.



https://commons.wikimedia. org/wiki/File: Multivariate_Gaussian.png

Gaussians	Gaussian Vector	HMM	Summary
00000000	○00000000000	00000000	000
Independent	Gaussians that	aren't identically distrib	uted

So if we have independent Gaussians that aren't identically distributed, we can write the pdf as

$$p_X(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \prod_{i=1}^{D} \sigma_i} e^{-\frac{1}{2} \sum_{i=1}^{D} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2}$$

or as

$$\rho_X(\mathbf{x}) = \frac{1}{|2\pi \mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

or as

$$p_X(\mathbf{x}) = rac{1}{|2\pi \mathbf{\Sigma}|^{1/2}} e^{-rac{1}{2}d_{\mathbf{\Sigma}}^2(\mathbf{x},\mu)}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

1 Gaussians, Brownian motion, and white noise

2 Gaussian Random Vector

3 HMM with Gaussian Observation Probabilities

4 Summary

- ▲日 > ▲ 雪 > ▲ 雪 > ▲ 国 > シタぐ

	1M with Discrete OI		
Gaussians	Gaussian Vector	HMM	Summary
00000000		○●0000000	000

1 Initial State Probabilities:

 $\pi'_{i} = \frac{E\left[\# \text{ state sequences that start with } q_{1} = i\right]}{\# \text{ state sequences in training data}}$

2 Transition Probabilities:

$$\pi'_{i} = \frac{E\left[\# \text{ frames in which } q_{t-1} = i, q_{t} = j\right]}{E\left[\# \text{ frames in which } q_{t-1} = i\right]}$$

Observation Probabilities:

$$b_j'(k) = rac{E\left[\# ext{ frames in which } q_t = j, k_t = k
ight]}{E\left[\# ext{ frames in which } q_t = j
ight]}$$

うしん 前 ふぼとうぼう (四)

The requirement that we vector-quantize the observations is a problem. It means that we can't model the observations very precisely.

It would be better if we could model the observation likelihood, $b_j(\mathbf{x})$, as a probability density in the space $\mathbf{x} \in \Re^D$. One way is to use a parameterized function that is guaranteed to be a properly normalized pdf. For example, a Gaussian:

$$b_i(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Diagonal-Covariance Gaussian pdf

Let's assume the feature vector has D dimensions, $\mathbf{x}_t = [x_{t,1}, \dots, x_{t,D}]$. The Gaussian pdf is

$$b_i(\mathbf{x}_t) = rac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}_i|^{1/2}} e^{-rac{1}{2} (\mathbf{x}_t - \mu_i) \mathbf{\Sigma}_i^{-1} (\mathbf{x}_t - \mu_i)^T}$$

The logarithm of a Gaussian is

$$\ln b_i(\mathbf{x}_t) = -\frac{1}{2} \left((\mathbf{x}_t - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x}_t - \boldsymbol{\mu}_i) + \ln |\boldsymbol{\Sigma}_i| + C \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where the constant is $C = D \ln(2\pi)$.

Gaussians	Gaussian Vector	HMM	Summary
00000000	000000000000	○000●0000	000
Raum_Welch			

Baum-Welch maximizes the expected log probability, i.e.,

$$E_{\mathbf{q}|\mathbf{X}}\left[\ln b_i(\mathbf{x}_t)\right] = -\frac{1}{2}\sum_{i=1}^N \gamma_t(i) \left((\mathbf{x}_t - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x}_t - \boldsymbol{\mu}_i) + \ln |\boldsymbol{\Sigma}_i| + C \right)$$

If we include all of the frames, then we get

$$E_{\mathbf{q}|\mathbf{X}}\left[\ln p(\mathbf{X}, \mathbf{q}|\Lambda)\right] = \text{other terms}$$

$$-\frac{1}{2}\sum_{t=1}^{T}\sum_{i=1}^{N} \gamma_t(i) \left((\mathbf{x}_t - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x}_t - \boldsymbol{\mu}_i) + \ln |\boldsymbol{\Sigma}_i| + C \right)$$

where the "other terms" are about $a_{i,j}$ and π_i , and have nothing to do with μ_i or Σ_i .

Gaussians	Gaussian Vector	HMM	Summary	
00000000	000000000000	○0000€000	000	
M-Step: optimum μ				

First, let's optimize μ . We want

$$0 = \frac{\partial}{\partial \boldsymbol{\mu}_q} \sum_{t=1}^T \sum_{i=1}^N \gamma_t(i) (\mathbf{x}_t - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x}_t - \boldsymbol{\mu}_i)$$

Re-arranging terms, we get

$$\boldsymbol{\mu}_q' = \frac{\sum_{t=1}^T \gamma_t(q) \mathbf{x}_t}{\sum_{t=1}^T \gamma_t(q)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

0000000	00000000000	0000000000	000
M-Sten: onti	· · · · · · · ·		

Second, let's optimize Σ_i . For this, it's easier to express the log likelihood as

$$E_{\mathbf{q}|\mathbf{X}}\left[\ln p_{X}(\mathbf{X},\mathbf{q})\right] = \text{other stuff} - \frac{1}{2}\sum_{t=1}^{T}\gamma_{t}(i)\sum_{d=1}^{D}\left(\ln\sigma_{i,d}^{2} + \frac{(x_{t,d} - \mu_{i,d})^{2}}{\sigma_{i,d}^{2}}\right)$$

Its scalar derivative is

$$\frac{\partial E_{\mathbf{q}|\mathbf{X}}\left[\ln p_{X}(\mathbf{X},\mathbf{q})\right]}{\partial \sigma_{i,d}^{2}} = -\frac{1}{2}\sum_{t=1}^{T}\gamma_{t}(i)\left(\frac{1}{\sigma_{i,d}^{2}} - \frac{(x_{t,d} - \mu_{i,d})^{2}}{\sigma_{i,d}^{4}}\right)$$

Which we can solve to find

$$\sigma_{i,d}^{2} = \frac{\sum_{t=1}^{T} \gamma_{t}(i) (x_{t,d} - \mu_{t,d})^{2}}{\sum_{t=1}^{T} \gamma_{t}(i)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Gaussians
occoccoccoGaussian Vector
coccoccoccoHMM
coccoccoccoSummary
cocMinimizing the cross-entropy: optimum σ

Arranging all the scalar derivatives into a matrix, we can write

$$\mathbf{\Sigma}'_{i} = \frac{\sum_{t=1}^{T} \gamma_{t}(i) (\mathbf{x}_{t} - \boldsymbol{\mu}_{i}) (\mathbf{x}_{t} - \boldsymbol{\mu}_{i})^{T}}{\sum_{t=1}^{T} \gamma_{t}(i)}$$

- Actually, the above formula holds even if the Gaussian has a non-diagonal covariance matrix, but Gaussians with non-diagonal covariance matrices work surprisingly badly in HMMs.
- For a diagonal-covariance Gaussian, we evaluate only the diagonal elements of the vector outer product $(\mathbf{x}_t \boldsymbol{\mu}_i)(\mathbf{x}_t \boldsymbol{\mu}_i)^T$

Gaussians	Gaussian Vector	HMM	Summary
00000000	000000000000	○○○○○○○●	000
Summary:	Gaussian Observation	PDFs	

So we can use Gaussians for $b_j(\mathbf{x})$:

• E-Step:

$$\gamma_t(i) = \frac{\alpha_t(i)\beta_t(i)}{\sum_{i'}\alpha_t(i')\beta_t(i')}$$

• M-Step:

$$\boldsymbol{\mu}_{i}^{\prime} = \frac{\sum_{t=1}^{T} \gamma_{t}(i) \mathbf{x}_{t}}{\sum_{t=1}^{T} \gamma_{t}(i)}$$
$$\boldsymbol{\Sigma}_{i}^{\prime} = \frac{\sum_{t=1}^{T} \gamma_{t}(i) (\mathbf{x}_{t} - \boldsymbol{\mu}_{i}) (\mathbf{x}_{t} - \boldsymbol{\mu}_{i})^{T}}{\sum_{t=1}^{T} \gamma_{t}(i)}$$

1 Gaussians, Brownian motion, and white noise

2 Gaussian Random Vector

3 HMM with Gaussian Observation Probabilities

 Gaussians
 Gaussian Vector
 HMM
 Summary

 Summary:
 Independent Gaussians that aren't identically

 distributed

$$p_{X}(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} \prod_{i=1}^{D} \sigma_{i}} e^{-\frac{1}{2} \sum_{i=1}^{D} \left(\frac{x_{i} - \mu_{i}}{\sigma_{i}}\right)^{2}}$$
$$= \frac{1}{|2\pi \mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{T} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}$$
$$= \frac{1}{|2\pi \mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2} d_{\mathbf{\Sigma}}^{2} (\mathbf{x}, \boldsymbol{\mu})}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Gaussians	Gaussian Vector	HMM	Summary
00000000	000000000000	00000000	○○●
Summary:	Gaussian Observation	PDFs	

So we can use Gaussians for $b_j(\mathbf{x})$:

• E-Step:

$$\gamma_t(i) = \frac{\alpha_t(i)\beta_t(i)}{\sum_{i'}\alpha_t(i')\beta_t(i')}$$

• M-Step:

$$\boldsymbol{\mu}_{i}^{\prime} = \frac{\sum_{t=1}^{T} \gamma_{t}(i) \mathbf{x}_{t}}{\sum_{t=1}^{T} \gamma_{t}(i)}$$
$$\boldsymbol{\Sigma}_{i}^{\prime} = \frac{\sum_{t=1}^{T} \gamma_{t}(i) (\mathbf{x}_{t} - \boldsymbol{\mu}_{i}) (\mathbf{x}_{t} - \boldsymbol{\mu}_{i})^{T}}{\sum_{t=1}^{T} \gamma_{t}(i)}$$