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Gaussian (Normal) pdf

@ Gauss considered this problem: under what circumstances
does it make sense to estimate the mean of a distribution, g,
by taking the average of the experimental values,
m= 33 X7

@ He demonstrated that m is the maximum likelihood estimate
of p if (not only if!) X is distributed with the following
probability density:
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Gaussian pdf
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Unit Normal pdf

Suppose that X is normal with mean p and standard deviation o
(variance o2):

1 1( x—p)2
px() = N 0?) = e 25)

Then U = (%) is normal with mean 0 and standard deviation 1:

1 1,2
pu(u) =N(u;0,1) = me‘ u

NI
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Central Limit Theorem

The Gaussian pdf is important because of the Central Limit
Theorem. Suppose X; are i.i.d. (independent and identically
distributed), each having mean p and variance o2. Then

ral limit_theoremlyapunoy_( # " = ‘
......... S ——— S

variables with E[X;] = 4 and Var[.X;] = 02 < oo, Then ¢
the random variables \/;(S,, — u) converge in distributi

N (<%2X> —u) i)N(O,cr2).

he case ¢ > (), convergence in distribution means that the

aria N
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Brownian motion

The Central Limit Theorem
matters because Einstein showed
that the movement of molecules,
in a liquid or gas, is the sum of n
i.i.d. molecular collisions.

In other words, the position after
t seconds is Gaussian, with mean
0, and with a variance of Dt,
where D is some constant.
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White Noise

@ Sound = air pressure
fluctuations caused by
velocity of air molecules

@ Velocity of warm air

i MMHWW i
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@ Sound produced by warm air

molecules without any https://commons.wikimedia.
external sound source = org/wiki/File:
Gaussian noise White_noise.svg

o Electrical signals: same.
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White Noise

@ White Noise = noise in
which each sample of the
signal, X, is i.i.d. | “

I

e Y MWWWWW d

a zero-mean random

variable whose variance is

independent of frequency

(“"white™) https://commons.wikimedia.
o Gaussian White Noise: x[n] org/wiki/File:

are i.i.d. and Gaussian White_noise.svg
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Vector of Independent Gaussian Variables

Suppose we have a frame containing D samples from a Gaussian

white noise process, xi,...,xp. Let's stack them up to make a
vector:
X1
X =
XD

This whole frame is random. In fact, we could say that x is a
sample value for a Gaussian random vector called X, whose
elements are Xi,...,Xp:

X1
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Vector of Independent Gaussian Variables

Suppose that the N samples are i.i.d., each one has the same
mean, p, and the same variance, 2. Then the pdf of this random
vector is

_1 Xi—#)2
e 2 o

P() Xp,, 2')_1_[\/%
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Vector of Independent Gaussian Variables

Mulivarite Normal Distbuton

((((((((((

Here's an example from
Wikipedia with a mean of about ..
50 and a standard deviation of
about 12.

[
o0 _
x 90 o
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Independent Gaussians that aren't identically distributed

Suppose that the N samples are independent Gaussians that aren't
identically distributed, i.e., X; has mean u; and variance J,?. Then
the pdf of this random vector is

_1 (Xi—ui)2
e 2 o

:jo

px(x) = N(x;p, X

,:1 \/27r0d

where p and X are the mean vector and covariance matrix:

141 o2 0
p=| 1|, E=|0 o

)
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Independent Gaussians that aren't identically distributed

Anpther useful form is:
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Example

Suppose that py; =1, pp = —1, a% =1, and a% = 4. Then

2 . 1 (e 2+1)?
ox) = [t (5) 2 L, Hew(2))

i=1 1/ 27r0§, am

The pdf has its maximum value, px(x) = 417r, atx=p = [ _11 }

} and at
M2

[M1i201 ]

+
It drops to px(x) = 477\[ at x = [ H1 =01

po £ 02

_ M1
and atx—[u2i202 ]

X = [ H1 ] It drops to px(x) = 4162 at x B
2
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Example

Contour Lines of Diagonal Covariance Gaussian
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Facts about linear algebra #1: determinant of a diagonal

matrix

Suppose that X is a diagonal matrix, with variances on the

diagonal:
o? 0
2

Then its determinant is

D
2
x| = H 04
i=1
So we can write the Gaussian pdf as

1 15d (Mf

px() = gy T
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Facts about linear algebra #2: inverse of a diagonal matrix

Suppose that X is a diagonal matrix, with variances on the

diagonal:
o2 0
y — 0 0'%
Then its inverse is:
1
i
-1 _ 0o L
2= 2
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Facts about linear algebra #3: weighted distance

Suppose that

X1 H1 o2 0
X = ) o= s z: 0 O'%

XD KD

Then
1
D Xj — Wi 2 07% (1) X1 — U1
Z<’Ul> = [x1 — p1,x2 — p2, .. ] 0 o2 Xp — 42
i . '

i=1

=(x— H)Tzfl(x — 1)
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Mahalanobis distance: Diagonal covariance

The Mahalanobis distance
between vectors x and p,
weighted by covariance matrix X,
is defined to be

ds(x, 1) = \/(x— W) TEHx — )

If X is a diagonal matrix, the
Mahalanobis distance is

D Xi — i 2
ds(x, p) = Z (IUI>
i=1 !

The contour lines of equal
Mahalanobis distance are ellipses.

Contour Lines of Diagonal Covariance Gaussian
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Independent Gaussians that aren't identically distributed

So if we have independent Gaussians that aren't identically
distributed, we can write the pdf as

1 3P ()

X) = e i
P = PRI, o
or as
1 1w E (xp)
px(x) = |27T}:|1/2e 2
or as
1
px(x) = Riac
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© HMM with Gaussian Observation Probabilities
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Review: HMM with Discrete Observations

@ Initial State Probabilities:

L E [# state sequences that start with g; = ]
! # state sequences in training data

@ Transition Probabilities:

,  E[# frames in which g;—1 = i,q: = j]

i =

E [# frames in which g;—1 = i]
© Observation Probabilities:

(k) = E [# frames in which q; = j, ks = K]

E [# frames in which g; = j]



HMM
0®000000

Baum-Welch with Gaussian Probabilities

The requirement that we vector-quantize the observations is a
problem. It means that we can’t model the observations very
precisely.

It would be better if we could model the observation likelihood,
bj(x), as a probability density in the space x € RP. One way is to
use a parameterized function that is guaranteed to be a properly
normalized pdf. For example, a Gaussian:

bi(x) = N (x; i, ;)
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Diagonal-Covariance Gaussian pdf

Let's assume the feature vector has D dimensions,
Xt = [X¢,1, ..., %Xe.p]. The Gaussian pdf is

1 — L (xe— ) (xe—pi) T
o) = g

The logarithm of a Gaussian is
) — 1 g1 . .
In bl(xt)__i (xe — i) X7 (xe — i) +In|X;| + C

where the constant is C = D In(2).
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Baum-Welch

Baum-Welch maximizes the expected log probability, i.e.,

Eyx [In bi(xe) :—fzvt (e = ) TE7 M xe = i) + In |Zi] + €)

If we include all of the frames, then we get

Eqix [In p(X, q|A)] = other terms
1 T N
=5 D03 el) (ke = ) TEH (xe = i) + In | Ei] + C)
t=1 i=1

where the “other terms” are about a;; and 7;, and have nothing to
do with p; or X;.
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M-Step: optimum p

First, let's optimize . We want

9 T N . Te 1
0= i DD e xe — i) TET (xe — i)

9 =1 j=1

Re-arranging terms, we get

-
; thl ’Vt(q)xt
Hg = =7

Zthl 7(q)
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M-Step: optimum X

Second, let's optimize X;. For this, it's easier to express the log
likelihood as

T D 2
1 . Xt,d — Hid
Eqix [In px (X, q)] = other stuff — 5 Z Ve (1) Z (In 0,'2,0' + (t(jng)
t=1 d=1 h

Its scalar derivative is

OEqx [In px(X, q)] Z ( (Xe.d — Mi,d)2>
= —— ’yt - — T 4

8UI 4

Which we can solve to find

U'2d Zt 1 Ve() (e d — ,ut,o/)2
" > ()
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Minimizing the cross-entropy: optimum o

Arranging all the scalar derivatives into a matrix, we can write

s _ S (ke = p)xe — i)
’ > (i)

@ Actually, the above formula holds even if the Gaussian has a
non-diagonal covariance matrix, but Gaussians with

non-diagonal covariance matrices work surprisingly badly in
HMMs.

@ For a diagonal-covariance Gaussian, we evaluate only the
diagonal elements of the vector outer product
(xe — pi)(xe — pi) "
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Summary: Gaussian Observation PDFs

So we can use Gaussians for bj(x):
o E-Step: ()
N Qi I/Bt i
) S a5
o M-Step:
N/' — Zt—'rzl P)/t(i)xt
LX)
s i (ke = pa)(xe — i)
i T .
2 =1 7e(7)

T
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Summary: Independent Gaussians that aren't identically

distributed

e\ 2
1 5 e*%ZPﬂ('TF')
(2m)b/2 [[iZ10i
- 1|1/2e—;(x—u)Tz-1(x—u)
22X

TP éyl/zeéd%(x’”)
T

px(x) =
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Summary: Gaussian Observation PDFs

So we can use Gaussians for bj(x):
o E-Step: ()
N Qi I/Bt i
) S a5
o M-Step:
N/' — Zt—'rzl P)/t(i)xt
LX)
s i (ke = pa)(xe — i)
i T .
2 =1 7e(7)

T
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