Baum-Welch and Viterbi

Mark Hasegawa-Johnson
These slides are in the public domain

ECE 417: Multimedia Signal Processing



© Review: Hidden Markov Models

© Training: Maximum-Likelihood with a Given State Sequence

© Training using Baum-Welch: Maximum Expected Log
Likelihood

@ Other Alphas: the Scaled and Neural Forward-Backward
Algorithms

@ Segmentation: The Viterbi Algorithm

@ Summary

e Written Example



Review
°

Outline

@ Review: Hidden Markov Models



Review
900000

Hidden Markov Model

@ Start in state g; = i with pmf ;.

@ Generate an observation, x, with pdf bj(x).

© Transition to a new state, g;1 = j, according to pmf a;;.
@ Repeat.



Review
0®0000

The Three Problems for an HMM

© Recognition: Given two different HMMs, A; and Ay, and an
observation sequence X. Which HMM was more likely to have
produced X7 In other words, p(X|A1) > p(X|A2)?

@ Segmentation: What is p(q: = i|X,A\)?

© Training: Given an initial HMM A, and an observation
sequence X, can we find A" such that p(X|\') > p(X|A)?



Review
00®000

The Forward Algorithm

Definition: at(i) = Pr{xi,...,x¢, g: = i|A}. Computation:

@ Initialize:

Q lterate:

© Terminate:

N
Pri{X|A} =" ar(i)
i=1



Review
[e]eleY Yolo)

The Backward Algorithm

Definition: S¢(i) = Pr{x¢+1,...,x7|g: = i,A}. Computation:
O Initialize:
Br(i)=1, 1<i<N

Q lterate:
N
Be(i) = Zai,jbj(xtﬂ)ﬂtﬂ(j), 1<i<N,1<t<T-1
j=1
© Terminate:

N
Pr{X|A} = ZW;b;(Xl)ﬁl(i)

i=1



Review
0000e0

Segmentation

@ The State Posterior:

ae(1)Be(i)
Sohey ae(k)Be(k)

Ye(i) = Pr{q: = iIX,A} =

@ The Segment Posterior:
§e(iyJ) = Pri{g: = i, qev1 = jIX, A}

_ a¢(i)ai jbj(xe11)Bev1())
Sory Soeny ae(k)akebe(xe41)Ber1(f)




Review
00000e

The Three Problems for an HMM

© Recognition: Given two different HMMs, A; and Ay, and an
observation sequence X. Which HMM was more likely to have
produced X? In other words, Pr{X|A1) > p(X|A2}?

@ Segmentation: What is Pr{q; = i|X,A}?

© Training: Given an initial HMM A, and an observation
sequence X, can we find A’ such that Pr{X|A'} > Pr{X|A}?



ML
°

Outline

@ Training: Maximum-Likelihood with a Given State Sequence



ML
©00000000000000

Maximum Likelihood Training

Suppose we're given several observation sequences of the form

= [x1,...,x7]. Suppose, also, that we have some initial guess
about the values of the model parameters (our initial guess doesn't
have to be very good). Maximum likelihood training means we

want to compute a new set of parameters, A = { U, bJ'( )}
that maximize Pr {X|A\'}.
@ Initial State Probabilities: Find values of 7/, 1 </ <N,
that maximize Pr{X|\’}.

@ Transition Probabilities: Find values of a
that maximize Pr{X|\"}.

© Observation Probabilities: Learn bj(x). What does that
mean, actually?

(1P <N,



ML
0O®0000000000000

Learning the Observation Probabilities

There are three common ways of representing the observation
probabilities, bj(x).

@ Vector quantize x, using some VQ method. Suppose x is the

k' codevector; then we just need to learn b;(k) such that
K—1
bi(k) >0, > bi(k)=1
k=0

@ Model b;(k) as a Gaussian, or some other parametric pdf
model, and learn its parameters.

© Model bj(k) as a neural net, and learn its parameters.



ML
00®000000000000

Maximum Likelihood Training

For now, suppose that we have the following parameters that we

need to learn:
@ Initial State Probabilities: 7/ such that

@ Transition Probabilities: af-j such that



ML
000®00000000000

Maximum Likelihood Training with Known State Sequence

Impossible assumption: Suppose that we actually know the state
sequences, q = [q1,...,q7]”, matching with each observation
sequence X = [x1,...,x7]. Then what would be the
maximum-likelihood parameters?



ML
0000@0000000000

Maximum Likelihood Training with Known State Sequence

Our goal is to find A = {7}, a; j, bj(k)} in order to maximize

LN = ) InPr{q,X|A}

sequences

=Inmg, +Inbg, (x1) +Inag, g + bg,(x2) + ...
N N K

:Z s,-|n7r,-—i—Zn,-,jIna,-J—i—Zm,-’klnb,-(k)
i—1 j=1 k=1

where
@ s; is the number of sequences that started with state /,
@ n;j is the number of frames in which (q;: =/, qt41 =),

® mj is the number of frames in which (q: = i, ks = k)



ML
00000®000000000

Maximum Likelihood Training with Known State Sequence

N K
L(N) = Z siIn 7r,-+Zn,'J|n 3[J+Zmi,k|n bi(k)
' j=1 k=1

When we differentiate that, we find the following derivatives:

(9£_S,'
om
oL _n,-J
oai;  a

aﬁ mj7k

These derivatives are never equal to zero! What went wrong?



ML
0000008000000 00

Maximum Likelihood Training with Known State Sequence

Here's the problem: we forgot to include the constraints

ZI-TI',' = 1, Zj a;J = 1, and Zk bj(k) = 1!
We can include the constraints using the method of Lagrange

multipliers.



ML
0000000e0000000

Lagrange Multipliers

The method of Lagrange
multipliers is a general solution
to the following problem:
@ x and y are parameters
e f(x,y) is a function we're
trying to maximize or
minimize. . .
@ ...subject to the constraint
that g(x,y) = 0, for some
function g(-).

e glxy)=c

) = d,

X

https://commons.wikimedia.

org/wiki/File:
LagrangeMultipliers2D.svg


https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg
https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg
https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg

ML

00000000e000000

Lagrange Multipliers

The constrained optimum value
of x,y can be found by:

@ Invent a scalar variable A
called the “Lagrange
multiplier.” In terms of A,
find the values x*(\), y*(})
that maximize

J(x,y) = f(x,y)+ Ag(x,
(y) bey)+ () https://commons.wikimedia.

@ Choose ) so that org/wiki/File:
g(x*(A\),y*(\)) =0 LagrangeMultipliers2D.svg


https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg
https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg
https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg

ML

000000000 e00000

Geometric Intuition

Geometric intuition:

© Suppose, at the peak of
f(x,y), the constraint is not
satisfied: g(x,y) <0

@ Then we add a penalty
term, f(x,y) + Ag(x,y), so
that the old peak is not as
high, and places with higher https://commons.wikimedia.
values of g(x,y) are better org/wiki/File:

LagrangeMultipliers2D.svg



https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg
https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg
https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg

ML
0000000000e0000

Maximum Likelihood Training with Known State Sequence

For the HMM, we want to maximize

N

N K
ﬁ(/\) = Z siIn Mg + Z n; j In aij+ Z m;j g In bi(k)
=1 k=1

i=1

... subject to the following constraints: >, mj =1, > a;; =1,
and >, bj(k) = 1.



ML
00000000000e000

Maximum Likelihood Training with Known State Sequence

Define the Lagrangian:

N N K
J(N) = Z silnmg, + Z nijlnajj+ Z mi k In bi(k)
i—1 j=1 k=1
N N N
+ A1 (l—zﬂ'/)"‘z)\zi I_Zai,j
i=1 i=1 Jj=1
N N
+) Asj <1 - bj(k)>
j=1

k=1



ML
000000000000e00

Maximum Likelihood Training with Known State Sequence

The derivatives of the Lagrangian are:

0T s
=—-A\
or; m
6j n,-d-
= —= =\,
dajj  aij

8j o mj _)\3.

9bj(k)  bj(k)

The optimum values of the parameters are:

S:

* 1

T —)\71
RN
RERDYY
i,k

* _
bi(k) = Tok

)\3’J'



ML
0000000000000 e0

Maximum Likelihood Training with Known State Sequence

The values of A1, A2;, and A3 that cause the constraints to be
satisfied are

A1 = E Siy A2, = E nij, Asj= E mj i
i Jj k

...which gives the constrained optimum parameters of the HMM

to be:
o
oD
ro My
70 > Nij
mj
b; (k) ’

B >k Mjk



ML
00000000000000e

Maximum Likelihood Training with Known State Sequence

Using the Lagrange multiplier method, the maximum likelihood
parameters for the HMM are:

@ Initial State Probabilities:

, _ 7 state sequences that start with g1 =i
e # state sequences in training data

@ Transition Probabilities:

, _ # frames in which q; 1 =1/,q: =

# frames in which gs_1 = i
© Observation Probabilities:

# frames in which g = j, ky = k
bi(k) = : :

# frames in which gq; = j



Baum-Welch
°

Outline

© Training using Baum-Welch: Maximum Expected Log
Likelihood



Baum-Welch
©00000000

Expectation Maximization

When the true state sequence is unknown, then we can't maximize
the likelihood Pr{q, X|A\’} directly. Instead, we maximize the
expected log likelihood, with the expectation taken over all
possible state sequences:

N

N K
ﬁZEc”X Z s,-In7r,-+Zn,-,jlna,-d—i—Zm,-,kln b,(k)
i—1 =1 k=1

The expected log likelihood is always less than or equal to the true
log likelihood, because the probability Pr{q|X} < 1.



Baum-Welch
0®0000000

Expectation Maximization

The only terms in the log likelihood that depend on the state
sequence are s;, n;j, and m;y, so:

N N K
EZEqp( Z s,-|n7r;+Zn;L,-|na,-J—|—Zm,-7kInb,-(k)
=1 k=1

i=1
N K

= Z Eq|X [S,'] Inm; + Z Eq|X [n;J] In ajj+ Z Eq|X [m,-7k] In b,'(k)



Baum-Welch
[e]eY Yololelelele)

Expectation Maximization: the M-Step (Maximize the

expected log likelihood))

Maximizing the expected log likelihood gives us some very
reasonable parameter estimates:

@ Initial State Probabilities:

r_ E [# state sequences that start with g1 = ]
! # state sequences in training data

@ Transition Probabilities:

S E [# frames in which g:—1 =i, q; = J]
" E[# frames in which g;_1 = i]

© Observation Probabilities:

b}(k) _ E [# frames in which g; = j, k; = K]

E [# frames in which g; = j]



Baum-Welch
[e1ele] Tolelelele)

Expectation Maximization: the E-Step (compute the

Expected log likelihood)

In order to find quantities like “the expected number of times

g1 = I, we need to compute the probabilities of all possible state
alignments, Pr{q}. But actually, this simplifies quite a lot. We
really only need these three quantities:

Eqx[sl= Y_ Pr{g =iX}

sequences
Eqx [nijl => Pr{qe =i, qe1 = jIX}
t

Eqx [mjk] = Z Pr{g: = j,x: = k|X}
t

= Z Pr{q: = j|X}

t:Xt:k



Baum-Welch
0000®0000

Expectation Maximization: the E-Step

Eqx[sl= > Pr{g =ilX}

sequences

Eqx [nijl = > Pr{a: =i, qer1 = jIX}
t

Eqix [mj k] = Z Pr{q: = j|X}

t:Xt:k
But these are things we already know! They are:

Eqxlsl= Y m()

sequences

Eqx [nij] = &(i.J)
Eqx [miid = Y 1)

t:xr=k



Baum-Welch
00000®000

The Baum-Welch Algorithm

@ Initial State Probabilities:

L E [# state sequences that start with g1 = ]
! # state sequences in training data
_ Zsequences 71(7)
# sequences




Baum-Welch
000000e00

The Baum-Welch Algorithm

o

@ Transition Probabilities:

S E [# frames in which g;—1 = i, q; = ]

" E[# frames in which g;_1 = i]
e (i)

i i &l ))




Baum-Welch
000000080

The Baum-Welch Algorithm

o
(2]
© Observation Probabilities:
b (k) = E [# frames in vv.hich ‘_Jt =J, ke .: k]
J E [# frames in which g; = j]
_ Et:xtzk Y(/)

> 7e()




Baum-Welch
000000008

Summary: The Baum-Welch Algorithm

@ Initial State Probabilities:

) _ Lsequences 11(7)
# sequences

@ Transition Probabilities:

T-1 ..
a/_ L t=1 gt(’a./)

i N T— ..
J Zj:l thll &e(i,J)
© Observation Probabilities:




Other Alphas
°

Outline

@ Other Alphas: the Scaled and Neural Forward-Backward
Algorithms



Other Alphas
©00000000

Other Alphas: the Scaled and Neural Forward-Backward

Algorithms

@ The standard forward-backward algorithm defines o (i) and
B¢(i) in the way that makes the theory easiest to learn.

@ The scaled forward-backward algorithm rescales both to avoid
numerical underflow.

@ The neural forward-backward algorithm (Graves, 2006)
redefines 3;(/) in a way that's easier to implement using
neural networks.



Other Alphas
0®0000000

Numerical Issues

Notice that a;; = O {%} and with discrete observations,
bj(x:) = O {#%}. A typical 3-second sentence has 300 frames. If
K ~ 1000, then

N
a(i) = Zatfl(j)aj}ibi(xt)

Jj=1

o[ 3} ot

N
Be(i) = Z 2 jbj(x¢+1)Bev1(j)

j=1

=0 { (;) Tt} =0 {1073%}

That's small enough to cause floating-point underflow in many
Processors.



Other Alphas
00®000000

The Solution: Scaling

The solution is to redefine a(i) and S:(i) so they don't underflow.
A useful definition is

S de1(i)aibi(xe)

&{i) = S S dea(i)aibi(xe)
B = Zj’V:l ajjbj(xe+1)Be+1())
t) = =w

2i-1 jN:1 ai,jbj(xt+1)8t+1(f)

Notice that we compute these by finding the numerator for each i,
then normalizing so that Y, &.(i) = >_; B¢(i) = 1.



Other Alphas
000®00000

Probabilistic Interpretation of Scaled Forward-Backward

Remember that the original forward-backward probabilities had
these interpretations:

th(l) = Pr{X]_, o X, qr = I|/\)
51‘(’) = Pr{xt—i-la S 7XT|qt =1, /\)

Rescaling at each time step, so that 3, &:(i) = 32, B:(/) = 1, has
the following meaning:

ar(i) = g1(t) Pr{x1,...,x¢,q: = i|\)

Bt(l) = g2(t) Pr{xt+17 tee 7xT|qt = i7/\)7

where the constants gi(t) and g»(t) depend on the frame index
(t), but don't depend on the state index (/).



Other Alphas
0000®0000

Baum-Welch with Scaled Forward-Backward

Baum-Welch computes the following probabilities:

() = DB e®)ea(B)ac(i)i(0)
CitaadB()  g(6)ga() Kily anl1)B(1)
_ adDA)
SNy Ge(i")Be(i)
Similarly,
. ar(i)ai jbj(xe+1)Be+1())
SO =SS ae@yan by (e ) Bea ()
&e(i)ajjbj(xe1) Bes1(f)

- Zil\/lzl Zjl\/lzl e (i")ap j by (Xt+1)5t+1(j/)

So scaling has no effect on Baum-Welch re-estimation, as long as
g1(t) and g»(t) are independent of i.



Other Alphas
00000e000

Neural Baum-Welch

Neural network implementations of Baum-Welch usually make one
more modification. Instead of

ar(i) = g1(t) Pr{x1,...,x¢,q: = i|\)
Bt(’) = g2(t) Pr{Xt+1, s )xT|qt = iv/\)a
end-to-end neural networks usually rescale a(i) and B:(i) as:

&(i) = a(t) Pri{x1,...,x¢, g = i|A)
Bt(l) = C2(t) PI’{Xt, s 7XT’qt = i’/\)a

where the constants ¢;(t) = g1(t) but ca(t) # go(t).



Other Alphas
000000e00

Neural Baum-Welch

The reason for the neural Baum-Welch is that it makes &:(/,/) a
little easier to compute. Instead of

ar(i)a; jbj(xe11)Ber1())

é-t .) ) = A
) Sy Sojiey &e(if)ai by (xe1) Bera ()

)

we now have
&e(i)aijBes1())
SNy Sy &eli)ai jr Bera ()

gt(iJ) =



Other Alphas
0000000e0

Summary: Original, Scaled, and Neural Forward-Backward

Algorithms
@ Original:
ar(i) = Pr{x1,...,X¢, q: = i|\)
Be(i) = Pr{x¢s1,...,x7|q: =i, \)
@ Scaled:
ai(i) = g1(t) Pr{x1, ..., x¢, g = i)
Bt(i) = gz(t) PV{XH—L cee ,XT|CIt =, /\)
@ Neural:

dt(l) = Cl(t) Pr{x17 sy Xty Gy = I|A)
Be(i) = ca(t) Pr{xe, ..., x7|qe = i, \)



Other Alphas
00000000e

Summary: Original, Scaled, and Neural Forward-Backward

Algorithms
@ Original:
£i ) = at(i)a;ij(xt+1)Bt+1(j)
Sy S ae()aje jrbjr(xeq1) Beya ()
@ Scaled:
gt(l ,/) — &t(i)ai,jbj(xt+1)3t+1(j) _
Z;yzl Zjl\/lzl e (i")ap jrbjr (xe41) Be41(J")
@ Neural:

&e()ai jBer1()

ét(la./) — . > .
SN Sy de()ap g B (7)




Segmentation
°

Outline

© Segmentation: The Viterbi Algorithm



Segmentation
©0000000000

What About State Sequences?

@ Remember when we first derived 7;(i), | pointed out a
problem: ~:(i) only tells us about one frame at a time! It
doesn’t tell us anything about the probability of a sequence of
states, covering a sequence of frames.

@ Today, let's find a complete solution. Let’s find the most
likely state sequence covering the entire utterance:

q* = argmaxPr{q, X|A}
q



Segmentation
0®000000000

The Max-Probability State Sequence

The problem of finding the max-probability state sequence is just
as hard as the problem of finding Pr{X|A}, for exactly the same
reason:

max Pr{q, X|A\} = Mmax - - max Pr{q, X|A}
q qr=1 q=1

which has complexity O {NT}.



Segmentation
00®00000000

The Viterbi Algorithm

Remember that we solved the recognition probability using a
divide-and-conquer kind of dynamic programming algorithm, with
the intermediate variable

at(j) = PI’{X]_, - Xe, Gt :J|A}

:Z"'Zpr{xla"'7xt7q17"'7qt—17qt:.j’/\}

qr—1 a1

The segmentation problem is solved using a similar dynamic
programming algorithm called the Viterbi algorithm, with a slightly
different intermediate variable:

5t(./) = r:?na)l( o mq?X Pr{Xl, ces Xt Q1. qe—1, Gt :J|A}



Segmentation
000@0000000

The Viterbi Algorithm

Keeping in mind the definition 0:(j) =
maXxg, ; -+ Maxq, Pr{x1,...,X¢, q1,...,qt—1, g+ = j|Lambda}, we
can devise an efficient algorithm to compute it:
Q Initialize:
(51(1') = 7T,'b,'(X1)

Q lterate:

5e(j) = maxde_1(i)aybj(xe)

i=1

© Terminate: The maximum-probability final state is
qr = argmax 1 07(j). But what are the best states at all of
the previous t|me steps?



Segmentation
0000®000000

Backtracing

We can find the optimum states at all times, g}, by keeping a
backpointer ;(j) from every time step. The backpointer points
to the state at time t — 1 that is most likely to have preceded state
j at time t:

Pe(j) = argmax- - - max Prix1,...,X¢,q1,...,qt—1 = i,q: = j|\}
1

N .
= argmax §¢_1(i)a; jbj(x¢)
p



Segmentation
00000@00000

Backtracing

If we have the backpointers available, then we can get the entire
maximum-probability state sequence by backtracing after we
terminate:
@ Terminate: Once we get to time t = T, we choose the most
probable final state.
o If we already know which state we want to end in, then we just
choose that state as g7.
o If we don't already know, then we choose g7 = argmax; d7(j)
e Backtrace: Having found the final state, we work backward,
by way of the backpointers, 1;(j):

G = Ye41(Giy1), T—-12t>1



Segmentation
00000080000

The Viterbi Algorithm

@ Initialize:
51([) = 7T,'b,‘(X1)
Q lterate:

0:(j) = max5t 1(7)aj jbj(x¢)

Ve(j) = argmaxét 1(1)ai jbj(x¢)
© Terminate:

qT = argmax or())
j=1

© Backtrace:

q; = VYe1 (i)



Segmentation
0000000e000

Example

06 04
07 1
04
08
017 04 . :037'5 0.1

08
e 3
’ .

https://commons.wikimedia.org/wiki/File:An_example_of _HMM.png

An example of HMM, GFDL by Reelsun, 2012,


https://commons.wikimedia.org/wiki/File:An_example_of_HMM.png

Segmentation
00000000800

Example

Day 1
Obsprvation
nanmal

Caloulata
P _staniistata) - P_obs{"normal®)

Viterbi animated demo, GFDL by Reelsun, 2012,

https://commons.wikimedia.org/wiki/File:Viterbi_animated_demo.gif


https://commons.wikimedia.org/wiki/File:Viterbi_animated_demo.gif

Segmentation
00000000080

Numerical Problems

Viterbi algorithm has the same floating-point underflow problems
as the forward-backward algorithm. But this time, there is an easy
solution, because the log of the max is equal to the max of the log:

In5:(j) = In <r}1§!\f{(5t1(i)ai,jbj(xt)>

= ml\elxlx(ln de—1(i) +Inajj + In bj(xt))

=



Segmentation
00000000000

The Log-Viterbi Algorithm

Q Initialize:
In (51(1) =Inm; +In b,‘(Xl)

Q lterate:

Ind:(j) = m,\;%(ln de—1(i) +Inajj + In bj(xt))

=

vi(j) = argﬁﬁax(ln de—1(i) +Inajj + In bj(x¢))

© Terminate: Choose the known final state g7
@ Backtrace:

CI: = Yt41 (CI:H)



Summary
°

Outline

@ Summary



Summary
®000

The Baum-Welch Algorithm: Initial and Transition

Probabilities

@ Initial State Probabilities:

) _ Lsequences 11(7)
7 sequences

@ Transition Probabilities:

D Y ()
D VD S A (N)
© Observation Probabilities:

o Sl
A = =0

a




Summary
o®00

Summary: Original, Scaled, and Neural Forward-Backward

Algorithms
@ Original:
ar(i) = Pr{x1,...,X¢, q: = i|\)
Be(i) = Pr{x¢s1,...,x7|q: =i, \)
@ Scaled:
ai(i) = g1(t) Pr{x1, ..., x¢, g = i)
Bt(i) = gz(t) PV{XH—L cee ,XT|CIt =, /\)
@ Neural:

dt(l) = Cl(t) Pr{x17 sy Xty Gy = I|A)
Be(i) = ca(t) Pr{xe, ..., x7|qe = i, \)



Summary
fe7e] Yo)

Summary: Original, Scaled, and Neural Forward-Backward

Algorithms
@ Original:
£i ) = at(i)a;ij(xt+1)Bt+1(j)
Sy S ae()aje jrbjr(xeq1) Beya ()
@ Scaled:
gt(l ,/) — &t(i)ai,jbj(xt+1)3t+1(j) _
Z;yzl Zjl\/lzl e (i")ap jrbjr (xe41) Be41(J")
@ Neural:

&e()ai jBer1()
Z,{yﬂ Zjl\/:1 & (i")ay jr Ber1 (')

ét(’a./) =



Summary
ocooe

The Log-Viterbi Algorithm

Q Initialize:
In (51(1) =Inm; +In b,‘(Xl)

Q lterate:

Ind:(j) = m,\;%(ln de—1(i) +Inajj + In bj(xt))

=

vi(j) = argﬁﬁax(ln de—1(i) +Inajj + In bj(x¢))

© Terminate: Choose the known final state g7
@ Backtrace:

CI: = Yt41 (CI:H)



Example
°

Outline

@ Written Example



Example
°

Written Example

In a second-order Markov process, g; depends on both g;_» and
g+_1, thus the model parameters are:

WIJ:Pr{qlzianZj} (1)
aijk = Pr{ge = klgr—2 = i,qe-1 = i} (2)
bi(x) = Pr{x|q. = k} G)

Suppose you have a sequence of observations for which you have
already a(i,j) and (:(i,J), defined as
at(iaj) = Pr{xlw"axtaqtfl = ia qt:J|/\} (4)
Bt(iaj):Pr{xt-‘rlv"‘vxT‘qt—l:i)qt:ja/\} (5)
In terms of the quantities defined in Egs. (1) through (5), find a

formula that re-estimates af-jk so that, unless a; ;  is already
optimal,

PF{X|7T,', af-ijk, bj(x}) > PF{X|7T,', aij k> bj(x})



	Review: Hidden Markov Models
	Training: Maximum-Likelihood with a Given State Sequence
	Training using Baum-Welch: Maximum Expected Log Likelihood
	Other Alphas: the Scaled and Neural Forward-Backward Algorithms
	Segmentation: The Viterbi Algorithm
	Summary
	Written Example

	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


