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Hidden Markov Model
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1 Start in state qt = i with pmf πi .

2 Generate an observation, x, with pdf bi (x).

3 Transition to a new state, qt+1 = j , according to pmf aij .

4 Repeat.
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The Three Problems for an HMM

1 Recognition: Given two different HMMs, Λ1 and Λ2, and an
observation sequence X . Which HMM was more likely to have
produced X? In other words, p(X |Λ1) > p(X |Λ2)?

2 Segmentation: What is p(qt = i |X ,Λ)?

3 Training: Given an initial HMM Λ, and an observation
sequence X , can we find Λ′ such that p(X |Λ′) > p(X |Λ)?
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The Forward Algorithm

Definition: αt(i) ≡ Pr {x1, . . . , xt , qt = i |Λ}. Computation:

1 Initialize:
α1(i) = πibi (x1), 1 ≤ i ≤ N

2 Iterate:

αt(j) =
N∑
i=1

αt−1(i)ai ,jbj(xt), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Terminate:

Pr {X|Λ} =
N∑
i=1

αT (i)
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The Backward Algorithm

Definition: βt(i) ≡ Pr {xt+1, . . . , xT |qt = i ,Λ}. Computation:

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

2 Iterate:

βt(i) =
N∑
j=1

ai ,jbj(xt+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

3 Terminate:

Pr {X|Λ} =
N∑
i=1

πibi (x1)β1(i)



Review ML Baum-Welch Other Alphas Segmentation Summary Example

Segmentation

1 The State Posterior:

γt(i) = Pr {qt = i |X,Λ} =
αt(i)βt(i)∑N

k=1 αt(k)βt(k)

2 The Segment Posterior:

ξt(i , j) = Pr {qt = i , qt+1 = j |X,Λ}

=
αt(i)ai ,jbj(xt+1)βt+1(j)∑N

k=1

∑N
`=1 αt(k)ak`b`(xt+1)βt+1(`)
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The Three Problems for an HMM

1 Recognition: Given two different HMMs, Λ1 and Λ2, and an
observation sequence X . Which HMM was more likely to have
produced X? In other words, Pr {X|Λ1) > p(X|Λ2}?

2 Segmentation: What is Pr {qt = i |X,Λ}?
3 Training: Given an initial HMM Λ, and an observation

sequence X, can we find Λ′ such that Pr {X|Λ′} > Pr {X|Λ}?
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Maximum Likelihood Training

Suppose we’re given several observation sequences of the form
X = [x1, . . . , xT ]. Suppose, also, that we have some initial guess
about the values of the model parameters (our initial guess doesn’t
have to be very good). Maximum likelihood training means we

want to compute a new set of parameters, Λ′ =
{
π′i , a

′
i ,j , b

′
j(x)

}
that maximize Pr {X|Λ′}.

1 Initial State Probabilities: Find values of π′i , 1 ≤ i ≤ N,
that maximize Pr{X |Λ′}.

2 Transition Probabilities: Find values of a′i ,j , 1 ≤ i , j ≤ N,
that maximize Pr{X |Λ′}.

3 Observation Probabilities: Learn b′j(x). What does that
mean, actually?
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Learning the Observation Probabilities

There are three common ways of representing the observation
probabilities, bj(x).

1 Vector quantize x, using some VQ method. Suppose x is the
kth codevector; then we just need to learn bj(k) such that

bj(k) ≥ 0,
K−1∑
k=0

bj(k) = 1

2 Model bj(k) as a Gaussian, or some other parametric pdf
model, and learn its parameters.

3 Model bj(k) as a neural net, and learn its parameters.
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Maximum Likelihood Training

For now, suppose that we have the following parameters that we
need to learn:

1 Initial State Probabilities: π′i such that

π′i ≥ 0,
N∑
i=1

π′i = 1

2 Transition Probabilities: a′i ,j such that

a′i ,j ≥ 0,
N∑
j=1

a′i ,j = 1

3 Observation Probabilities: b′j(k) such that

b′j(k) ≥ 0,
K∑

k=1

b′j(k) = 1
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Maximum Likelihood Training with Known State Sequence

Impossible assumption: Suppose that we actually know the state
sequences, q = [q1, . . . , qT ]T , matching with each observation
sequence X = [x1, . . . , xT ]. Then what would be the
maximum-likelihood parameters?
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Maximum Likelihood Training with Known State Sequence

Our goal is to find Λ = {πi , ai ,j , bj(k)} in order to maximize

L(Λ) =
∑

sequences

ln Pr{q,X|Λ}

= lnπq1 + ln bq1(x1) + ln aq1,q2 + bq2(x2) + . . .

=
N∑
i=1

si lnπi +
N∑
j=1

ni ,j ln ai ,j +
K∑

k=1

mi ,k ln bi (k)


where

si is the number of sequences that started with state i ,

ni ,j is the number of frames in which (qt = i , qt+1 = j),

mi ,k is the number of frames in which (qt = i , kt = k)
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Maximum Likelihood Training with Known State Sequence

L(Λ) =
N∑
i=1

si lnπi +
N∑
j=1

ni ,j ln ai ,j +
K∑

k=1

mi ,k ln bi (k)


When we differentiate that, we find the following derivatives:

∂L
∂πi

=
si
πi

∂L
∂ai ,j

=
ni ,j
ai ,j

∂L
∂bj(k)

=
mj ,k

bj(k)

These derivatives are never equal to zero! What went wrong?
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Maximum Likelihood Training with Known State Sequence

Here’s the problem: we forgot to include the constraints∑
i πi = 1,

∑
j ai ,j = 1, and

∑
k bj(k) = 1!

We can include the constraints using the method of Lagrange
multipliers.



Review ML Baum-Welch Other Alphas Segmentation Summary Example

Lagrange Multipliers

The method of Lagrange
multipliers is a general solution
to the following problem:

x and y are parameters

f (x , y) is a function we’re
trying to maximize or
minimize. . .

. . . subject to the constraint
that g(x , y) = 0, for some
function g(·).

https://commons.wikimedia.

org/wiki/File:

LagrangeMultipliers2D.svg

https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg
https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg
https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg
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Lagrange Multipliers

The constrained optimum value
of x , y can be found by:

1 Invent a scalar variable λ
called the “Lagrange
multiplier.” In terms of λ,
find the values x∗(λ), y∗(λ)
that maximize

J (x , y) = f (x , y) +λg(x , y)

2 Choose λ so that
g(x∗(λ), y∗(λ)) = 0

https://commons.wikimedia.

org/wiki/File:

LagrangeMultipliers2D.svg

https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg
https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg
https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg
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Geometric Intuition

Geometric intuition:

1 Suppose, at the peak of
f (x , y), the constraint is not
satisfied: g(x , y) < 0

2 Then we add a penalty
term, f (x , y) + λg(x , y), so
that the old peak is not as
high, and places with higher
values of g(x , y) are better

https://commons.wikimedia.

org/wiki/File:

LagrangeMultipliers2D.svg

https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg
https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg
https://commons.wikimedia.org/wiki/File:LagrangeMultipliers2D.svg
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Maximum Likelihood Training with Known State Sequence

For the HMM, we want to maximize

L(Λ) =
N∑
i=1

si lnπq1 +
N∑
j=1

ni ,j ln ai ,j +
K∑

k=1

mi ,k ln bi (k)


. . . subject to the following constraints:

∑
i πi = 1,

∑
j ai ,j = 1,

and
∑

k bj(k) = 1.
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Maximum Likelihood Training with Known State Sequence

Define the Lagrangian:

J (Λ) =
N∑
i=1

si lnπq1 +
N∑
j=1

ni ,j ln ai ,j +
K∑

k=1

mi ,k ln bi (k)


+ λ1

(
1−

N∑
i=1

πi

)
+

N∑
i=1

λ2,i

1−
N∑
j=1

ai ,j


+

N∑
j=1

λ3,j

(
1−

N∑
k=1

bj(k)

)
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Maximum Likelihood Training with Known State Sequence

The derivatives of the Lagrangian are:

∂J
∂πi

=
si
πi
− λ1

∂J
∂ai ,j

=
ni ,j
ai ,j
− λ2,i

∂J
∂bj(k)

=
mj ,k

bj(k)
− λ3,i

The optimum values of the parameters are:

π∗i =
si
λ1

a∗i ,j =
ni ,j
λ2,i

b∗j (k) =
mj ,k

λ3,j



Review ML Baum-Welch Other Alphas Segmentation Summary Example

Maximum Likelihood Training with Known State Sequence

The values of λ1, λ2,i , and λ3,j that cause the constraints to be
satisfied are

λ1 =
∑
i

si , λ2,i =
∑
j

ni ,j , λ3,j =
∑
k

mj ,k

. . . which gives the constrained optimum parameters of the HMM
to be:

π∗i =
si∑
i si

a∗i ,j =
ni ,j∑
j ni ,j

b∗j (k) =
mj ,k∑
k mj ,k
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Maximum Likelihood Training with Known State Sequence

Using the Lagrange multiplier method, the maximum likelihood
parameters for the HMM are:

1 Initial State Probabilities:

π′i =
# state sequences that start with q1 = i

# state sequences in training data

2 Transition Probabilities:

a′i ,j =
# frames in which qt−1 = i , qt = j

# frames in which qt−1 = i

3 Observation Probabilities:

b′j(k) =
# frames in which qt = j , kt = k

# frames in which qt = j
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Expectation Maximization

When the true state sequence is unknown, then we can’t maximize
the likelihood Pr{q,X|Λ′} directly. Instead, we maximize the
expected log likelihood, with the expectation taken over all
possible state sequences:

L = Eq|X

 N∑
i=1

si lnπi +
N∑
j=1

ni ,j ln ai ,j +
K∑

k=1

mi ,k ln bi (k)


The expected log likelihood is always less than or equal to the true
log likelihood, because the probability Pr{q|X} ≤ 1.
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Expectation Maximization

The only terms in the log likelihood that depend on the state
sequence are si , ni ,j , and mi ,k , so:

L = Eq|X

 N∑
i=1

si lnπi +
N∑
j=1

ni ,j ln ai ,j +
K∑

k=1

mi ,k ln bi (k)


=

N∑
i=1

Eq|X [si ] lnπi +
N∑
j=1

Eq|X [ni ,j ] ln ai ,j +
K∑

k=1

Eq|X [mi ,k ] ln bi (k)


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Expectation Maximization: the M-Step (Maximize the
expected log likelihood))

Maximizing the expected log likelihood gives us some very
reasonable parameter estimates:

1 Initial State Probabilities:

π′i =
E [# state sequences that start with q1 = i ]

# state sequences in training data

2 Transition Probabilities:

a′i ,j =
E [# frames in which qt−1 = i , qt = j ]

E [# frames in which qt−1 = i ]

3 Observation Probabilities:

b′j(k) =
E [# frames in which qt = j , kt = k]

E [# frames in which qt = j ]
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Expectation Maximization: the E-Step (compute the
Expected log likelihood)

In order to find quantities like “the expected number of times
q1 = i ,” we need to compute the probabilities of all possible state
alignments, Pr {q}. But actually, this simplifies quite a lot. We
really only need these three quantities:

Eq|X [si ] =
∑

sequences

Pr{q1 = i |X}

Eq|X [ni ,j ] =
∑
t

Pr{qt = i , qt+1 = j |X}

Eq|X [mj ,k ] =
∑
t

Pr{qt = j , xt = k |X}

=
∑

t:xt=k

Pr{qt = j |X}
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Expectation Maximization: the E-Step

Eq|X [si ] =
∑

sequences

Pr{q1 = i |X}

Eq|X [ni ,j ] =
∑
t

Pr{qt = i , qt+1 = j |X}

Eq|X [mj ,k ] =
∑

t:xt=k

Pr{qt = j |X}

But these are things we already know! They are:

Eq|X [si ] =
∑

sequences

γ1(i)

Eq|X [ni ,j ] =
∑
t

ξt(i , j)

Eq|X [mj ,k ] =
∑

t:xt=k

γt(j)
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The Baum-Welch Algorithm

1 Initial State Probabilities:

π′i =
E [# state sequences that start with q1 = i ]

# state sequences in training data

=

∑
sequences γ1(i)

# sequences
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The Baum-Welch Algorithm

1

2 Transition Probabilities:

a′i ,j =
E [# frames in which qt−1 = i , qt = j ]

E [# frames in which qt−1 = i ]

=

∑T−1
t=1 ξt(i , j)∑N

j=1

∑T−1
t=1 ξt(i , j)
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The Baum-Welch Algorithm

1

2

3 Observation Probabilities:

b′j(k) =
E [# frames in which qt = j , kt = k]

E [# frames in which qt = j ]

=

∑
t:xt=k γt(j)∑

t γt(j)
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Summary: The Baum-Welch Algorithm

1 Initial State Probabilities:

π′i =

∑
sequences γ1(i)

# sequences

2 Transition Probabilities:

a′i ,j =

∑T−1
t=1 ξt(i , j)∑N

j=1

∑T−1
t=1 ξt(i , j)

3 Observation Probabilities:

b′j(k) =

∑
t:xt=k γt(j)∑

t γt(j)
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Other Alphas: the Scaled and Neural Forward-Backward
Algorithms

The standard forward-backward algorithm defines αt(i) and
βt(i) in the way that makes the theory easiest to learn.

The scaled forward-backward algorithm rescales both to avoid
numerical underflow.

The neural forward-backward algorithm (Graves, 2006)
redefines βt(i) in a way that’s easier to implement using
neural networks.
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Numerical Issues

Notice that ai ,j = O
{

1
N

}
, and with discrete observations,

bj(xt) = O
{

1
K

}
. A typical 3-second sentence has 300 frames. If

K ≈ 1000, then

αt(i) =
N∑
j=1

αt−1(j)aj ,ibi (xt)

= O
{(

1

K

)t}
= O

{
10−300

}
βt(i) =

N∑
j=1

ai ,jbj(xt+1)βt+1(j)

= O

{(
1

K

)T−t
}

= O
{

10−300
}

That’s small enough to cause floating-point underflow in many
processors.
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The Solution: Scaling

The solution is to redefine αt(i) and βt(i) so they don’t underflow.
A useful definition is

α̂t(i) =

∑N
j=1 α̂t−1(j)aj ,ibi (xt)∑N

i=1

∑N
j=1 α̂t−1(j)aj ,ibi (xt)

β̂t(i) =

∑N
j=1 ai ,jbj(xt+1)β̂t+1(j)∑N

i=1

∑N
j=1 ai ,jbj(xt+1)β̂t+1(j)

Notice that we compute these by finding the numerator for each i ,
then normalizing so that

∑
i α̂t(i) =

∑
i β̂t(i) = 1.
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Probabilistic Interpretation of Scaled Forward-Backward

Remember that the original forward-backward probabilities had
these interpretations:

αt(i) = Pr{x1, . . . , xt , qt = i |Λ)

βt(i) = Pr{xt+1, . . . , xT |qt = i ,Λ)

Rescaling at each time step, so that
∑

i α̂t(i) =
∑

i β̂t(i) = 1, has
the following meaning:

α̂t(i) = g1(t) Pr{x1, . . . , xt , qt = i |Λ)

β̂t(i) = g2(t) Pr{xt+1, . . . , xT |qt = i ,Λ),

where the constants g1(t) and g2(t) depend on the frame index
(t), but don’t depend on the state index (i).
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Baum-Welch with Scaled Forward-Backward

Baum-Welch computes the following probabilities:

γt(i) =
αt(i)βt(i)∑N

i ′=1 αt(i ′)βt(i ′)
=

g1(t)g2(t)αt(i)βt(i)

g1(t)g2(t)
∑N

i ′=1 αt(i ′)βt(i ′)

=
α̂t(i)β̂t(i)∑N

i ′=1 α̂t(i ′)β̂t(i ′)

Similarly,

ξt(i , j) =
αt(i)ai ,jbj(xt+1)βt+1(j)∑N

i ′=1

∑N
j ′=1 αt(i ′)ai ′,j ′bj ′(xt+1)βt+1(j ′)

=
α̂t(i)ai ,jbj(xt+1)β̂t+1(j)∑N

i ′=1

∑N
j ′=1 α̂t(i ′)ai ′,j ′bj ′(xt+1)β̂t+1(j ′)

So scaling has no effect on Baum-Welch re-estimation, as long as
g1(t) and g2(t) are independent of i .
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Neural Baum-Welch

Neural network implementations of Baum-Welch usually make one
more modification. Instead of

α̂t(i) = g1(t) Pr{x1, . . . , xt , qt = i |Λ)

β̂t(i) = g2(t) Pr{xt+1, . . . , xT |qt = i ,Λ),

end-to-end neural networks usually rescale αt(i) and βt(i) as:

α̌t(i) = c1(t) Pr{x1, . . . , xt , qt = i |Λ)

β̌t(i) = c2(t) Pr{xt , . . . , xT |qt = i ,Λ),

where the constants c1(t) = g1(t) but c2(t) 6= g2(t).
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Neural Baum-Welch

The reason for the neural Baum-Welch is that it makes ξt(i , j) a
little easier to compute. Instead of

ξt(i , j) =
α̂t(i)ai ,jbj(xt+1)β̂t+1(j)∑N

i ′=1

∑N
j ′=1 α̂t(i ′)ai ′,j ′bj ′(xt+1)β̂t+1(j ′)

,

we now have

ξt(i , j) =
α̌t(i)ai ,j β̌t+1(j)∑N

i ′=1

∑N
j ′=1 α̌t(i ′)ai ′,j ′ β̌t+1(j ′)
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Summary: Original, Scaled, and Neural Forward-Backward
Algorithms

Original:

αt(i) = Pr{x1, . . . , xt , qt = i |Λ)

βt(i) = Pr{xt+1, . . . , xT |qt = i ,Λ)

Scaled:

α̂t(i) = g1(t) Pr{x1, . . . , xt , qt = i |Λ)

β̂t(i) = g2(t) Pr{xt+1, . . . , xT |qt = i ,Λ)

Neural:

α̌t(i) = c1(t) Pr{x1, . . . , xt , qt = i |Λ)

β̌t(i) = c2(t) Pr{xt , . . . , xT |qt = i ,Λ)
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Summary: Original, Scaled, and Neural Forward-Backward
Algorithms

Original:

ξt(i , j) =
αt(i)ai ,jbj(xt+1)βt+1(j)∑N

i ′=1

∑N
j ′=1 αt(i ′)ai ′,j ′bj ′(xt+1)βt+1(j ′)

Scaled:

ξt(i , j) =
α̂t(i)ai ,jbj(xt+1)β̂t+1(j)∑N

i ′=1

∑N
j ′=1 α̂t(i ′)ai ′,j ′bj ′(xt+1)β̂t+1(j ′)

Neural:

ξt(i , j) =
α̌t(i)ai ,j β̌t+1(j)∑N

i ′=1

∑N
j ′=1 α̌t(i ′)ai ′,j ′ β̌t+1(j ′)
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What About State Sequences?

Remember when we first derived γt(i), I pointed out a
problem: γt(i) only tells us about one frame at a time! It
doesn’t tell us anything about the probability of a sequence of
states, covering a sequence of frames.

Today, let’s find a complete solution. Let’s find the most
likely state sequence covering the entire utterance:

q∗ = argmax
q

Pr{q,X|Λ}
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The Max-Probability State Sequence

The problem of finding the max-probability state sequence is just
as hard as the problem of finding Pr{X|Λ}, for exactly the same
reason:

max
q

Pr{q,X|Λ} =
N

max
qT=1

· · · N
max
q1=1

Pr{q,X|Λ}

which has complexity O
{
NT
}

.
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The Viterbi Algorithm

Remember that we solved the recognition probability using a
divide-and-conquer kind of dynamic programming algorithm, with
the intermediate variable

αt(j) ≡ Pr{x1, . . . , xt , qt = j |Λ}

=
∑
qt−1

· · ·
∑
q1

Pr{x1, . . . , xt , q1, . . . , qt−1, qt = j |Λ}

The segmentation problem is solved using a similar dynamic
programming algorithm called the Viterbi algorithm, with a slightly
different intermediate variable:

δt(j) ≡ max
qt−1

· · ·max
q1

Pr{x1, . . . , xt , q1, . . . , qt−1, qt = j |Λ}
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The Viterbi Algorithm

Keeping in mind the definition δt(j) ≡
maxqt−1 · · ·maxq1 Pr{x1, . . . , xt , q1, . . . , qt−1, qt = j |Lambda}, we
can devise an efficient algorithm to compute it:

1 Initialize:
δ1(i) = πibi (x1)

2 Iterate:

δt(j) =
N

max
i=1

δt−1(i)ai ,jbj(xt)

3 Terminate: The maximum-probability final state is
q∗T = argmaxNj=1 δT (j). But what are the best states at all of
the previous time steps?
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Backtracing

We can find the optimum states at all times, q∗t , by keeping a
backpointer ψt(j) from every time step. The backpointer points
to the state at time t − 1 that is most likely to have preceded state
j at time t:

ψt(j) = argmax
i
· · ·max

q1
Pr{x1, . . . , xt , q1, . . . , qt−1 = i , qt = j |Λ}

=
N

argmax
i=1

δt−1(i)ai ,jbj(xt)
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Backtracing

If we have the backpointers available, then we can get the entire
maximum-probability state sequence by backtracing after we
terminate:

Terminate: Once we get to time t = T , we choose the most
probable final state.

If we already know which state we want to end in, then we just
choose that state as q∗T .
If we don’t already know, then we choose q∗T = argmaxj δT (j)

Backtrace: Having found the final state, we work backward,
by way of the backpointers, ψt(j):

q∗t = ψt+1

(
q∗t+1

)
, T − 1 ≥ t ≥ 1
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The Viterbi Algorithm

1 Initialize:
δ1(i) = πibi (x1)

2 Iterate:

δt(j) =
N

max
i=1

δt−1(i)ai ,jbj(xt)

ψt(j) =
N

argmax
i=1

δt−1(i)ai ,jbj(xt)

3 Terminate:

q∗T =
N

argmax
j=1

δT (j)

4 Backtrace:

q∗t = ψt+1

(
q∗t+1

)
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Example

An example of HMM, GFDL by Reelsun, 2012,

https://commons.wikimedia.org/wiki/File:An_example_of_HMM.png

https://commons.wikimedia.org/wiki/File:An_example_of_HMM.png
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Example

Viterbi animated demo, GFDL by Reelsun, 2012,

https://commons.wikimedia.org/wiki/File:Viterbi_animated_demo.gif

https://commons.wikimedia.org/wiki/File:Viterbi_animated_demo.gif
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Numerical Problems

Viterbi algorithm has the same floating-point underflow problems
as the forward-backward algorithm. But this time, there is an easy
solution, because the log of the max is equal to the max of the log:

ln δt(j) = ln

(
N

max
i=1

δt−1(i)ai ,jbj(xt)

)
=

N
max
i=1

(ln δt−1(i) + ln ai ,j + ln bj(xt))
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The Log-Viterbi Algorithm

1 Initialize:
ln δ1(i) = lnπi + ln bi (x1)

2 Iterate:

ln δt(j) =
N

max
i=1

(ln δt−1(i) + ln ai ,j + ln bj(xt))

ψt(j) =
N

argmax
i=1

(ln δt−1(i) + ln ai ,j + ln bj(xt))

3 Terminate: Choose the known final state q∗T .

4 Backtrace:

q∗t = ψt+1

(
q∗t+1

)
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The Baum-Welch Algorithm: Initial and Transition
Probabilities

1 Initial State Probabilities:

π′i =

∑
sequences γ1(i)

# sequences

2 Transition Probabilities:

a′i ,j =

∑T−1
t=1 ξt(i , j)∑N

j=1

∑T−1
t=1 ξt(i , j)

3 Observation Probabilities:

b′j(k) =

∑
t:xt=k γt(j)∑

t γt(j)
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Summary: Original, Scaled, and Neural Forward-Backward
Algorithms

Original:

αt(i) = Pr{x1, . . . , xt , qt = i |Λ)

βt(i) = Pr{xt+1, . . . , xT |qt = i ,Λ)

Scaled:

α̂t(i) = g1(t) Pr{x1, . . . , xt , qt = i |Λ)

β̂t(i) = g2(t) Pr{xt+1, . . . , xT |qt = i ,Λ)

Neural:

α̌t(i) = c1(t) Pr{x1, . . . , xt , qt = i |Λ)

β̌t(i) = c2(t) Pr{xt , . . . , xT |qt = i ,Λ)
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Summary: Original, Scaled, and Neural Forward-Backward
Algorithms

Original:

ξt(i , j) =
αt(i)ai ,jbj(xt+1)βt+1(j)∑N

i ′=1

∑N
j ′=1 αt(i ′)ai ′,j ′bj ′(xt+1)βt+1(j ′)

Scaled:

ξt(i , j) =
α̂t(i)ai ,jbj(xt+1)β̂t+1(j)∑N

i ′=1

∑N
j ′=1 α̂t(i ′)ai ′,j ′bj ′(xt+1)β̂t+1(j ′)

Neural:

ξt(i , j) =
α̌t(i)ai ,j β̌t+1(j)∑N

i ′=1

∑N
j ′=1 α̌t(i ′)ai ′,j ′ β̌t+1(j ′)
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The Log-Viterbi Algorithm

1 Initialize:
ln δ1(i) = lnπi + ln bi (x1)

2 Iterate:

ln δt(j) =
N

max
i=1

(ln δt−1(i) + ln ai ,j + ln bj(xt))

ψt(j) =
N

argmax
i=1

(ln δt−1(i) + ln ai ,j + ln bj(xt))

3 Terminate: Choose the known final state q∗T .

4 Backtrace:

q∗t = ψt+1

(
q∗t+1

)
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Written Example

In a second-order Markov process, qt depends on both qt−2 and
qt−1, thus the model parameters are:

πi ,j = Pr{q1 = i , q2 = j} (1)

ai ,j ,k = Pr{qt = k |qt−2 = i , qt−1 = i} (2)

bk(x) = Pr{x|qt = k} (3)

Suppose you have a sequence of observations for which you have
already αt(i , j) and βt(i , j), defined as

αt(i , j) = Pr{x1, . . . , xt , qt−1 = i , qt = j |Λ} (4)

βt(i , j) = Pr{xt+1, . . . , xT |qt−1 = i , qt = j ,Λ} (5)

In terms of the quantities defined in Eqs. (1) through (5), find a
formula that re-estimates a′ijk so that, unless ai ,j ,k is already
optimal,

Pr{X|πi , a′i ,j ,k , bj(x}) > Pr{X|πi , ai ,j ,k , bj(x})
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