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Notation: Inputs and Outputs

Let’s assume we have T consecutive observations,
X = [x1, . . . , xT ].

A “hidden Markov model” represents those probabilities by
assuming some sort of “hidden” state sequence,
q = [q1, . . . , qT ]T , where qt is the hidden (unknown) state
variable at time t.

The idea is, can we model these probabilities well enough to solve
problems like:

1 Recognition: What’s Pr{X} given the model?

2 Segmentation: What state is the model in at time t?

3 Training: Can we learn a model to fit some data?
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HMM: Key Concepts

An HMM is a “generative model,” meaning that it models the
joint probability Pr{q,X} using a model of the way in which those
data might have been generated. An HMM pretends the following
generative process:

1 Start in state qt = i with pmf πi = Pr{q1 = i}.
2 Generate an observation, x, with pdf bi (x) = Pr{x|qt = i}.
3 Transition to a new state, qt+1 = j , according to pmf

ai ,j = Pr{qt+1 = j |qt = i}.
4 Repeat.
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HMM: Finite State Diagram

1 2 3

x x x
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b1(x)
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a31
b3(x)

1 Start in state qt = i , for some 1 ≤ i ≤ N.

2 Generate an observation, x, with pdf bi (x).

3 Transition to a new state, qt+1 = j , according to pmf ai ,j .

4 Repeat steps #2 and #3, T times each.
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Notation: Model Parameters

Solving an HMM is possible if you carefully keep track of
notation. Here’s standard notation for the parameters:

πi = Pr{q1 = i} is called the initial state probability. Let N
be the number of different states, so that 1 ≤ i ≤ N.

ai ,j = Pr{qt = j |qt−1 = i} is called the transition
probability, 1 ≤ i , j ≤ N.

bj(x) = Pr{xt = x|qt = j} is called the observation
probability. It is usually estimated by a neural network,
though Gaussians, GMMs, and even lookup tables are possible.

Λ is the complete set of model parameters, including all the
πi ’s and ai ,j ’s, and the Gaussian, GMM, or neural net
parameters necessary to compute bj(x).
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The Three Problems for an HMM

1 Recognition:
Suppose our ASR knows two different words. Each word is
represented by a different set of model parameters: Λ1 and Λ2.
Suppose we have a test spectrogram, X. We know that X is
one of those two words, but we don’t know which.
Which HMM was more likely to have produced X? In other
words, is Pr{X|Λ1} > Pr{X|Λ2}?

2 Segmentation: What is Pr{qt = i |X,Λ}?
3 Training: Given an initial HMM Λ, and an observation

sequence X, can we find Λ′ such that Pr{X|Λ′} > Pr{X|Λ}?
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The HMM Recognition Problem

Given

X = [x1, . . . , xT ] and
Λ = {πi , ai,j , bj(x)∀i , j},

what is Pr{X|Λ}?
Let’s solve a simpler problem first:

Given

X = [x1, . . . , xT ] and
q = [q1, . . . , qT ]T and
Λ = {πi , ai,j , bj(x)∀i , j},

what is Pr{X|Λ}?
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Joint Probability of State Sequence and Observation
Sequence

The joint probability of the state sequence and the observation
sequence is calculated iteratively, from beginning to end:

The probability that q1 = q1 is πq1 .

Given q1, the probability of x1 is bq1(x1).

Given q1, the probability of q2 is aq1q2 .

. . . and so on. . .

Pr{q,X|Λ} = πq1bq1(x1)
T∏
t=2

aqt−1qtbqt (xt)
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Probability of the Observation Sequence

The probability of the observation sequence, alone, is somewhat
harder, because we have to solve this sum:

Pr{X|Λ} =
∑
q

Pr{q,X|Λ}

=
N∑

qT=1

· · ·
N∑

q1=1

Pr{q,X|Λ}

On the face of it, this calculation seems to have complexity
O
{
NT
}

. So for a very small 100-frame utterance, with only 10
states, we have a complexity of O

{
10100

}
=one google.
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The Forward Algorithm

The solution is to use a kind of dynamic programming algorithm,
called “the forward algorithm.” The forward probability is defined
as follows:

αt(i) ≡ Pr{x1, . . . , xt , qt = i |Λ}

Obviously, if we can find αt(i) for all i and all t, we will have
solved the recognition problem, because

Pr{X|Λ} = Pr{x1, . . . , xT |Λ}

=
N∑
i=1

Pr{x1, . . . , xT , qT = i |Λ}

=
N∑
i=1

αT (i)
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The Forward Algorithm

So, working with the definition αt(i) ≡ Pr{x1, . . . , xt , qt = i |Λ},
let’s see how we can actually calculate αt(i).

1 Initialize:

α1(i) = Pr{q1 = i , x1|Λ}
= Pr{q1 = i |Λ}Pr{x1|q1 = i ,Λ}
= πibi (x1)
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The Forward Algorithm

Definition: αt(i) ≡ Pr{x1, . . . , xt , qt = i |Λ}.
1 Initialize:

α1(i) = πibi (x1), 1 ≤ i ≤ N

2 Iterate:

αt(j) = Pr{x1, . . . , xt , qt = j |Λ}

=
N∑
i=1

Pr{x1, . . . , xt−1, qt−1 = i}Pr{qt = j |qt−1 = i}Pr{xt |qt = j}

=
N∑
i=1

αt−1(i)ai ,jbj(xt)
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The Forward Algorithm

So, working with the definition αt(i) ≡ Pr{x1, . . . , xt , qt = i |Λ},
let’s see how we can actually calculate αt(i).

1 Initialize:
α1(i) = πibi (x1), 1 ≤ i ≤ N

2 Iterate:

αt(j) =
N∑
i=1

αt−1(i)ai ,jbj(xt), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Terminate:

Pr{X|Λ} =
N∑
i=1

αT (i)
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Visualizing the Forward Algorithm using a Trellis

One way to think about the forward algorithm is by way of a
trellis. A trellis is a matrix in which each time step is a column,
and each row shows a different state. For example, here’s a trellis
with N = 4 states, and T = 5 frames:

Public domain image by Qef, 2009
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Visualizing the Forward Algorithm using a Trellis

Using a trellis, the initialize step computes probabilities for the
first column of the trellis:

α1(i) = πibi (x1), 1 ≤ i ≤ N
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Visualizing the Forward Algorithm using a Trellis

The iterate step then computes the probabilities in the tth column
by adding up the probabilities in the (t − 1)st column, each
multiplied by the corresponding transition probability:

αt(j) =
N∑
i=1

αt−1(i)ai ,jbj(xt), 1 ≤ j ≤ N, 2 ≤ t ≤ T
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Visualizing the Forward Algorithm using a Trellis

The terminate step then computes the likelihood of the model by
adding the probabilities in the last column:

Pr{X|Λ} =
N∑
i=1

αT (i)
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The Forward Algorithm: Computational Complexity

Most of the computational complexity is in this step:

Iterate:

αt(j) =
N∑
i=1

αt−1(i)ai ,jbj(xt), 1 ≤ i , j ≤ N, 2 ≤ t ≤ T

Its complexity is:

For each of T − 1 time steps, 2 ≤ t ≤ T ,. . .

we need to calculate N different alpha-variables, αt(j), for
1 ≤ j ≤ N,. . .

each of which requires a summation with N terms.

So the total complexity is O
{
TN2

}
. For example, with N = 10

and T = 100, the complexity is only TN2 = 10, 000 multiplies
(much, much less than NT !!)
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The Segmentation Problem

There are different ways to define the segmentation problem. Let’s
define it this way:

We want to find the most likely state, qt = i , at time t,. . .

given knowledge of the entire sequence X = [x1, . . . , xT ], not
just the current observation. So for example, we don’t want
to recognize state i at time t if the surrounding observations,
xt−1 and xt+1, make it obvious that this choice is impossible.
Also,. . .

given knowledge of the HMM that produced this sequence, Λ.

In other words, we want to find the state posterior probability,
Pr{qt = i |X,Λ}. Let’s define some more notation for the state
posterior probability, let’s call it

γt(i) = Pr{qt = i |X,Λ}
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Use Bayes’ Rule

Suppose we already knew the joint probability, Pr{X, qt = i |Λ}.
Then we could find the state posterior using Bayes’ rule:

γt(i) = Pr{qt = i |X,Λ} =
Pr{X, qt = i |Λ}∑N
j=1 Pr{X, qt = j |Λ}
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Use the Forward Algorithm

Let’s expand this:

Pr{X, qt = i |Λ} = Pr{qt = i , x1, . . . , xT |Λ}

We already know about half of that:
αt(i) = Pr{qt = i , x1, . . . , xt |Λ}. We’re only missing this part:

Pr{X, qt = i |Λ} = αt(i) Pr{xt+1, . . . , xT |qt = i ,Λ}

Again, let’s try the trick of “solve the problem by inventing new
notation.” Let’s define

βt(i) ≡ Pr{xt+1, . . . , xT |qt = i ,Λ}
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The Backward Algorithm

Now let’s use the definition βt(i) ≡ Pr{xt+1, . . . , xT |qt = i ,Λ},
and see how we can compute that.

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

This might not seem immediately obvious, but think about it.
Given that there are no more x vectors after time T , what is
the probability that there are no more x vectors after time T?
Well, 1, obviously.
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The Backward Algorithm

Now let’s use the definition βt(i) ≡ Pr{xt+1, . . . , xT |qt = i ,Λ},
and see how we can compute that.

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

2 Iterate:

βt(i) = Pr{xt+1, . . . , xT |qt = i ,Λ}

=
N∑
j=1

Pr{qt+1 = j |qt = i}Pr{xt+1|qt+1 = j}Pr{xt+2, . . . , xT |qt+1 = j}

=
N∑
j=1

ai ,jbj(xt+1)βt+1(j)
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The Backward Algorithm

Now let’s use the definition βt(i) ≡ Pr{xt+1, . . . , xT |qt = i ,Λ},
and see how we can compute that.

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

2 Iterate:

βt(i) =
N∑
j=1

ai ,jbj(xt+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

3 Terminate:

Pr{X|Λ} =
N∑
i=1

πibi (x1)β1(i)
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The Backward Algorithm: Computational Complexity

Most of the computational complexity is in this step:

Iterate:

βt(i) =
N∑
j=1

ai ,jbj(xt+1)βt+1(j), 1 ≤ i ≤ N, 2 ≤ t ≤ T

Its complexity is:

For each of T − 1 time steps, 1 ≤ t ≤ T − 1,. . .

we need to calculate N different beta-variables, βt(i), for
1 ≤ i ≤ N,. . .

each of which requires a summation with N terms.

So the total complexity is O
{
TN2

}
.
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Use Bayes’ Rule

The segmentation probability is then

γt(i) =
Pr{X , qt = i |Λ}∑N

k=1 Pr{X, qt = k|Λ}

=
Pr{x1, . . . , xt , qt = i |Λ}Pr{xt+1, . . . , xT |qt = i ,Λ}∑N

k=1 Pr{x1, . . . , xt , qt = k |Λ}Pr{xt+1, . . . , xT |qt = k,Λ}

=
αt(i)βt(i)∑N

k=1 αt(k)βt(k)
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What About State Sequences?

Notice a problem: γt(i) only tells us about one frame at a
time! It doesn’t tell us anything about the probability of a
sequence of states, covering a sequence of frames!

. . . but we can extend the same reasoning to cover two or
more consecutive frames. For example, let’s define:

ξt(i , j) = Pr{qt = i , qt+1 = j |X,Λ}

We can solve for ξt(i , j) using the same reasoning that we
used for γt(i)! The result is

ξt(i , j) =
αt(i)ai ,jbj(xt+1)βt=1(j)∑N

k=1

∑N
`=1 αt(k)ak,`b`(xt+1)βt=1(`)
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Segmentation: The Backward Algorithm

In summary, we now have three new probabilities, all of which can
be computed in O

{
TN2

}
time:

1 The Backward Probability:

βt(i) = Pr{xt+1, . . . , xT |qt = i ,Λ}

2 The State Posterior:

γt(i) = Pr{qt = i |X ,Λ} =
αt(i)βt(i)∑N

k=1 αt(k)βt(k)

3 The Segment Posterior:

ξt(i , j) = Pr{qt = i , qt+1 = j |X ,Λ}

=
αt(i)ai ,jbj(xt+1)βt+1(j)∑N

k=1

∑N
`=1 αt(k)ak`b`(xt+1)βt+1(`)
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Example: Gumball Machines

“Gumball machines in a Diner at Dallas, Texas, in 2008,” Andreas Praefcke, public domain image.
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Example: Gumball Machines

Observation Probabilities: Suppose we have two gumball
machines, q = 1 and q = 2. Machine #1 contains 60%
Grapefruit gumballs, 40% Apple gumballs. Machine #2
contains 90% Apple, 10% Grapefruit.

b1(x) =

{
0.4 x = A

0.6 x = G
, b2(x) =

{
0.9 x = A

0.1 x = G

Initial State Probabilities: My friend George flips a coin to
decide which machine to use first.

πi = 0.5, i ∈ {1, 2}
Transition Probabilities: After he’s used a machine, George
flips two coins, and he only changes machines if both coins
come up heads.

ai ,j =

{
0.75 i = j

0.25 i 6= j
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A Segmentation Problem

George bought three gumballs, using three quarters. The
three gumballs are (x1 = A, x2 = G , x3 = A).

Unfortunately, George is a bit of a goofball. The second of the
three “quarters” was actually my 1867 silver “Seated Liberty”
dollar, worth $4467.

Which of the two machines do I need to dismantle in order to
get my coin back?

Image used with permission of the National Numismatic Collection, National Museum of American History.
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The Forward Algorithm: t = 1

Remember, the observation sequence is X = (A,G ,A).

α1(i) = πib1(i)

=

{
(0.5)(0.4) = 0.2 i = 1

(0.5)(0.9) = 0.45 i = 2
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The Forward Algorithm: t = 2

Remember, the observation sequence is X = (A,G ,A).

α2(j) =
2∑

i=1

α1(i)ai ,jbj(x2)

=

{
α1(1)a11b1(x2) + α1(2)a21b1(x2) j = 1

α1(1)a12b2(x2) + α1(2)a22b2(x2) j = 2

=

{
(0.2)(0.75)(0.6) + (0.45)(0.25)(0.6) = 0.04125 j = 1

(0.2)(0.25)(0.1) + (0.45)(0.75)(0.1) = 0.03875 j = 2
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The Backward Algorithm: t = 3

The backward algorithm always starts out with βT (i) = 1!

β3(i) = 1, i ∈ {1, 2}
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The Backward Algorithm: t = 2

Remember, the observation sequence is X = (A,G ,A).

β2(i) =
2∑

j=1

ai ,jbj(x3)β3(j)

=

{
a11b1(x3) + a12b2(x3) i = 1

a21b1(x3) + a22b2(x3) i = 2

=

{
(0.75)(0.4) + (0.25)(0.9) = 0.525 j = 1

(0.25)(0.4) + (0.75)(0.9) = 0.775 j = 2
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The Solution to the Puzzle

Given the observation sequence is X = (A,G ,A), the posterior
state probability is

γ2(i) =
α2(i)β2(i)∑2

k=1 α2(k)β2(k)

=

{
(0.04125)(0.525)

(0.04125)(0.525)+(0.03875)(0.775) = 0.42 i = 1
(0.03875)(0.775)

(0.04125)(0.525)+(0.03875)(0.775) = 0.58 i = 2

So I should dismantle gumball machine #2, hoping to find my rare
1867 silver dollar. Good luck!
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The Forward Algorithm

Definition: αt(i) ≡ Pr{x1, . . . , xt , qt = i |Λ}. Computation:

1 Initialize:
α1(i) = πibi (x1), 1 ≤ i ≤ N

2 Iterate:

αt(j) =
N∑
i=1

αt−1(i)ai ,jbj(xt), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Terminate:

Pr{X|Λ} =
N∑
i=1

αT (i)
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The Backward Algorithm

Definition: βt(i) ≡ Pr{xt+1, . . . , xT |qt = i ,Λ}. Computation:

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

2 Iterate:

βt(i) =
N∑
j=1

ai ,jbj(xt+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

3 Terminate:

Pr{X|Λ} =
N∑
i=1

πibi (x1)β1(i)
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Hidden Markov Model

1 2 3

x x x

a11
a12

a13

b1(x)

a22

a21

a23

b2(x)

a33

a32

a31
b3(x)

1 Start in state qt = i with pmf πi .

2 Generate an observation, x, with pdf bi (x).

3 Transition to a new state, qt+1 = j , according to pmf ai ,j .

4 Repeat.
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Written Example

Joe’s magic shop opens at random, and closes at random. To be
more specific, if it’s currently closed, the probability that it will
open any time in the next hour is 10%; if it’s currently open, the
probability that it will close any time in the next hour is 10%.
The shop is in a busy part of town; when the shop is open, the
area gets even busier. If the shop is closed, the area is noisy with a
probability of 40%. If it’s open, the area is noisy with a probability
of 70%.
At 1:00, you notice that the area is noisy, so you go to check;
unfortunately, the shop is closed. At 2:00, the area is still noisy,
but you decide that it’s unlikely that the shop has opened in just
one hour. At 3:00 the area is still noisy, and at 4:00, and at 5:00.
How many hours in a row does the area need to be noisy before
you decide that, with a probability of greater than 50%, the shop is
open?
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