Lecture 11: Adaboost and the Viola-Jones Face
Detector

Mark Hasegawa-Johnson
These slides are in the public domain

ECE 417: Multimedia Signal Processing, Fall 2023

@ Review: Neural Network

© The Face Detection Problem
© Haar-Like Features

@ The Weak Classifier

e AdaBoost

@ Summary

Review
°

Outline

© Review: Neural Network

Review: Images

An image is a signal, or a stack of signals. Often we write
I[c, m, n] where c is the color (c € {1,2,3}), m is the row index,
and n is the column index.

Review
oce

Review: Convolutional Neural Nets

@ Forward-prop is convolution:
Z[d,m,n] = WI[d, c,m,n]xI[c, m, n]

© Back-prop is correlation:

oL oL
= W Y=
dlc, m, n] [d. e, m, n]*OZ[d, m, n]
© Weight gradient is correlation:

o oc
OWI[d,c,m,n] 0Z[d, m,n]

*![c,m,n]

Detection
°

Outline

© The Face Detection Problem

Detection
®0000

https://commons.wikimedia.org/wiki/File:
Face_detection. jpg

https://commons.wikimedia.org/wiki/File:Face_detection.jpg
https://commons.wikimedia.org/wiki/File:Face_detection.jpg

Detection
0®000

Face Detection: Problem Definition

for m in range(M):
for n in range(N):
for height in range(number_rows — row):
for width in range(number_cols — col):
does (m,n, height ,width) contain a face?

Detection
00®00

Why is Face Detection Difficult?

A CNN face detector might detect a face of width w and height h
by training a “face detector” filter, f[m, n] of width w and height
h, then filtering the whole image to find the (m, n) where the face
is located:

Zw,h[m7 n] = w,h[mv n] * I[m7 n]

If the image is M x N, this operation requires w x h x M x N
multiplications.

Detection
000®0

Faces Come in Many Different Sizes

personalized Information

and Advertisement.

— Detection of faces and fa
expression by SHORE'™ s¢

— Real-time detec ‘

https://commons.wikimedia.org/wiki/File:
Fraunhofer_-_Face_Detection_-_4406340595. jpg

https://commons.wikimedia.org/wiki/File:Fraunhofer_-_Face_Detection_-_4406340595.jpg
https://commons.wikimedia.org/wiki/File:Fraunhofer_-_Face_Detection_-_4406340595.jpg

Detection
0000e

Faces Come in Many Different Sizes

@ Suppose the face width can be any size between 1 <w < W
@ Suppose the face height can be any size between 1 < h < H

@ Then we need WH different filters, f,, n[m, n], so that we can
detect all the different faces

@ Total computational complexity is:

H
1
> whMN = Z(W+1)2(H+1)2/\//N multiplications/image

Features
°

Outline

© Haar-Like Features

Features
[Jelelelololele}

Haar-Like Features

Viola and Jones (2004) proposed solving the computational
complexity problem by using very simple filters that they called
“Haar-like features,” because they resemble Haar wavelets.
© Haar-like features require no multiplications, because for all n,
f[n] is either —1 or +1.

@ Haar-like features also require very few additions, because of a
neat trick called the “integral image.”

Features
[e] Telelololele}

(1) Haar-like features require no multiplication

Haar-like features are convolutions, Z[m, n] = f[m, n] * I[m, n], but
the filters are f[m,n] € {—1,1}. Shown below are 2-rectangle,
3-rectangle, and 4-rectangle filters. The black pixels are

f[m, n] = +1, the white pixels are f[m, n] = —1.

1= 1%
(1) (2) (3) (4)

https://commons.wikimedia.org/wiki/File:
VJ_featureTypes.svg

https://commons.wikimedia.org/wiki/File:VJ_featureTypes.svg
https://commons.wikimedia.org/wiki/File:VJ_featureTypes.svg

Features
00®00000

(2) Haar-like features require few additions

Haar-like feature require very few additions, because they take
advantage of an intermediate computation called the integral
image:

H[m, n] = Z Zl[m',n'], 1<m<M1<n<N

m'=1n'=1

The integral image is computed just once, for the entire image.

Features
[e]eleY Yololele}

Summing a rectangle: Three additions

Using the integral image, the sum of all pixels inside a rectangle
can be computed with only three additions.

m+h n+w
> iim 'l = lm+h, ntw]—H[m, n+w]—l[m-+h, n]+1[m, n]

m'=mn’=n

—

D C

https://commons.wikimedia.org/wiki/File:
Prm_VJ_fig3_computeRectangleWithAlpha.png

https://commons.wikimedia.org/wiki/File:Prm_VJ_fig3_computeRectangleWithAlpha.png
https://commons.wikimedia.org/wiki/File:Prm_VJ_fig3_computeRectangleWithAlpha.png

Features
0000®000

SRR Sl Byl ek J
mth nw 2 23 :15 16 14‘i 19
> D Im'n] 0 8B 7 M7
m'=mn'=n 1 35 34 3 32 6
= l[m+ h,n+ w]— ll[m,n+ w]
— l[m + h, n] + H[m, n] 2. 31 33 37 70 75 111

43 7 84 127 161 222

Figure: https://commons. 56 101 135 200 @54 333

wikimedia.org/wiki/File:

Integral_image_ 80 148 197 278 346 444
application_example.svg 110 186 263 371 450 555
111 222 333 444 555 666

d5+16+ 14428+ 27+ 1=

101 + 450 - 254 - 186 = 111

https://commons.wikimedia.org/wiki/File:Integral_image_application_example.svg
https://commons.wikimedia.org/wiki/File:Integral_image_application_example.svg
https://commons.wikimedia.org/wiki/File:Integral_image_application_example.svg
https://commons.wikimedia.org/wiki/File:Integral_image_application_example.svg

Features
00000®00

The Training Token

Suppose we have a particular training datum x, which is an image
from the training database, /, and a corresponding rectangle
specifier (r1, r2, r3, rs) =(horizontal,vertical,width,height):

I[r2, n) lilr, n + r3]

lilrn + ra,n] -+ Ll +rn,n+r]

What are the different features we can compute from this image?

Features
000000e0

The Features

Viola & Jones define Haar-like features specified by:

o (¢i,¢2): Upper-left-corner of the sub-rectangle within the
face rectangle, expressed as a fraction of the face rectangle,
i.e., the upper left corner is [m, n| = (r2 + rac2, r1 + r3¢h1)

@ (¢3,¢a): Size of the sub-rectangle, expressed as a fraction of
the face rectangle size, i.e., width in pixels is r3¢3, height in
pixels is rygq

@ (01,02): number of blocks in the horizontal and vertical
directions, respectively.

Features
[e]elelelolote] }

The Features

For example, here is a feature specified by

f = (¢1, 02,03, 04,01,02) = (¢, 8.5, 5.2, 1):

Weak Classifier
°

Outline

@ The Weak Classifier

Weak Classifier
®00000000000

The Weak Classifier

Viola & Jones define the j “weak classifier” in terms of a feature
fi(-), a sign pj € {—1,1}, and a threshold 6; € R:

oy)1 opifi(x) < pib;
hi(x) _{ 0 otherwise

Weak Classifier
O®0000000000

The Weak Classifier: Complete Specification

Putting it all together, a “weak classifier,” f;, is specified by 8
numbers:

o (¢j1,Pj2,bj3,0j4): position of the subrectangle within the
candidate face rectangle

@ (0j.1,0j2): number of blocks within the subrectangle
@);: threshold above or below which we should detect a face

e pj: sign of the weak classifier: are faces detected by being
below (+1) or above (-1) the threshold feature value?

Weak Classifier
0O®000000000

Selecting the Weak Classifier

@ How do we choose (¢1, ¢2, ¢3, ¢a, 01,02, p, 0)?

@ To start with, let's suppose that we are evaluating a candidate
feature, f; = (@1, 9j2, 9j3, jas 9j,1, 0j,2)-

@ We want to find the values of p; and 6¢; that minimize the
training corpus error rate for this f;, and we want to calculate
the value of that error rate.

Weak Classifier
000®00000000

Feature Values, Weights, and Labels

@ For every training
token Xi, find the ¥ 10° Feature f(x;1,1,4,1,3,0)
feature value f;(x;).

° Second' aSSIgn a 00 200 400 600 800 1000
Welght to every x10° t=1 Weights Are All the Same
token, wj(x;). To '
start with, all the 0 ‘
0 200 400 600 800 1000
WelghtS are equalv =1 for Faces, Y=0 for Nonfaces
(x:) = 1 i
wj(x;) = - where n is ol
the number of tokens. o ‘
] 200 400 600 800 1000

Rectangle Number 1<=i<=(# Images)*8

@ Third, list the target
labels, y; € {1,0}.

Weak Classifier
0000®0000000

Feature Values, Weightsx Labels

x10° Feature f(x;1,1,4,1,3,0)

@ Convert the labels
from {0,1} to
{_17 1}

° |\/|u|t|p|y each label 0 200 400 60 800 1000
times its weight, to x0” oo Tves 2101
give its “signed 0s
importance:” T
-05

si= W(X,') X (2y’ _ 1)) 200 200 600 800 1000

Weak Classifier

00000000000

Sorted Features, Argsorted Weightsx Labels

@ Now sort all the
tokens in ascending
order of their feature
value.

@ In the example here,
you can see
immediately that
large feature values
tend to be associated
with the label y; =1,
and small feature
values with y; =0,
though there's a lot
of variability.

Feature f(x;1,1,4,1,3,0) Sorted

200

400 600 800 1000

Welghl Times 2*Y-1

A

200

400 600 800 1000
Sort Order

Weak Classifier
000000e00000

True Reject, False Reject, True Accept, False Accept

e If hj(x;) = 0, we say that the

classifier “rejects” the token.
o If hj(x;) = 1, we say the

classifier “accepts” the

token. fi)) =0 fi(x) =1
yi=0 TR FA
yi=1 FR TA

o If hj(xi) = yi, we call this a
“true accept” or “true
reject.”

o If hj(X,') = yi, we call it a
“false accept” or ‘“false
reject.”

Weak Classifier
000000080000

True Reject, False Reject, True Accept, False Accept

o If pj = +1, the classifier accepts any token with f;(x;) < 6;:

Pr(FAlp; = 1) = Pr(fi(x) < 0;,y; =0) = > w(x)(1 - y;)

I':IS'(X,')<9J'

Pr(TAlp =1) =Pr(fi(x) < Oj,yi=1)= Y wi(x)yi
i:fi(xi)<0;

o If pj = —1, the classifier rejects any token with fi(x;) < 6;:

Pr(TRIpy = —1) = Pr(f(x) < 0% =0) = 3" wil)(1—)
i:fi(xi)<6;

Pr(FRIpj = —1) = Pr(fi(x) <6j,yi=1) = Y w(x)yi
i:f(x;)<0;

Weak Classifier
000000008000

True Reject, False Reject, True Accept, False Accept

The optimum values of p;
and 6; are somehow
related to these two

curves: x10° Theta
10
5 1
Pr(FAlp = 1) = T
0 200 400 600 800 1000
PI’(TR| pj=— 1) = Pr(x<theta, y=1)=PTA(p=1)=PFR(p=-1)

. . J— . 05
E : wi(xi)(1 — y;) /
it f,'(X,') <9j % 200 400 600 800 1000
Pr(x<theta, y=0)=PFA(p=1)=PTR(p=-1)

Pr(TAlpj =1) = —
Pr(FRIpj = —1) =

> wilx)yi

i:fi(xi)<0;

Weak Classifier
000000000800

Training Error

The probability of error is the probability of false accept, plus the
probability of false reject. If p; = +1:

Pr(Error|pj = +1) = Pr(FA|pj = 1) + Pr(FR|p; = 1)
— Pr(FAlp; = 1) + (Pr(ys = 1) — Pr(TAlp; = +1))
= > wl)A-y)+Pi— > wix)y

I':f)'(X,')<9j i:G(X,‘)(ej
=Pi— Y w2y - 1),

i:fi(x;)<0;

where P; = Pr(y; = 1). Similarly, if p; = —1:

Pr(Error|p; = —1) = Py + Z wj(xi)(2y; — 1)
i:f(x;)<0;

Weak Classifier
000000000080

Minimum Training Error

Pr(Error|p; =1,0;) = Py — Z wi(xi)(2yi — 1)
i:fi(xi)<0;

Pr(Error|p; = —1,6;) = Po + Z wj(x;)(2yi — 1)
i:fi(xi)<0;

Weak Classifier
00000000000e

Optimizing the Weak Classifier

So, given a particular feature f; = (¢j 1, ¢j2, 93, ®j4,0)1,0}2), we
can find the best weak classifier by calculating these two curves,
and then choosing the value of p; and 6; that minimizes the error
rate:

Pr(Error|p; =1,0;) = P1 — Z w;(xi)(2y;i — 1)
i:fi(x;)<0;

Pr(Error|pj = —1,6;) = Po + Z w;i(xi)(2yi — 1)
i:fi(xi)<0;

AdaBoost
°

Outline

© AdaBoost

AdaBoost
©0000000

AdaBoost

@ The AdaBoost algorithm (“adaptive boosting”) is an
algorithm that combines several weak classifiers in order to
form a strong classifier.

o Suppose that hy(x) € {0,1} is the t™h weak classifier

@ Suppose that a; is the confidence of the weak classifier

@ Then the strong classifier's decision is given by:

h(x) {1 > oehi(x) > %Zt Qo

0 otherwise

AdaBoost
0®000000

AdaBoost

QNe(X] Qg
h(x):{l Yeah(x) > 33,

0 otherwise

@ Notice that this is a kind of neural net. The first-layer
excitation is p:0; — p:f¢(x), the first-layer nonlinearity is a unit
step, and the second-layer weights are a;.

@ It's like a neural net during training time, but the training
algorithm is different.

AdaBoost
[e]eY Yelolelele}

The AdaBoost Training Algorithm

The AdaBoost training algorithm is as follows:
@ Initialize: Assign all training tokens the same weight.
Q lterate: fort =1,2,...:
@ Exhaustively test every feature f;:
e Find p;, and 6; to minimize the weighted training corpus error.
@ Set h; equal to the h; that had the lowest error.
@ Decrease the weight of the correctly classified tokens, and
increase the weight of the incorrectly classified tokens.
The result is that each new classifier, h;, is encouraged to try to fix
the mistakes of all the classifiers that came before it.

AdaBoost
[e]eleY Yolelele}

The AdaBoost Training Algorithm

Q Initialize: wy(x;)) =1, 1<i<n.
Q lterate: fort =1,2,...

@ Rescale the weights so they sum to one
@ Exhaustively test every possible feature. Find f;, p;, and 6; to

minimize
€t = Z we(xi)lyi — he(xi)|

@ If any training token was correctly classified, decrease its
weight by

€
Wt+1(Xi) = ﬁtWt(Xi)a ﬂt = 1 te
— €t

AdaBoost
[eeleTeY Yelele}

The AdaBoost Training Algorithm

for t in range(T):
w=w / np.sum(w)
for thetal in [0,1/6,2/6,3/6,4/6,5/6]:
for theta3 in [1/6,2/6,...,1—thetal]:

for 02 in [1,...,4—01]:

epsilon = error(thetal ,...)
if epsilon < epsilon_best[t]:
f[t] = (thetal, theta2, ..., 02)

beta[t] = epsilon_best[t] / (1—epsilon_best[t])
wlh = y] *= beta[t]

AdaBoost
00000e00

The AdaBoost Training Algorithm

Thus, for example, after the first iteration, the weights wy(x) have
two different magnitudes: those that were correctly classified by
hi(x), and those that were incorrectly classified:

Il

ooooo
— class 0
class 1

I

500

ooooo

ooooo

ooooo

AdaBoost
000000e0

The AdaBoost Training Algorithm

@ The weighted error rate tends to be lowest in the first

iteration, and get worse as t gets larger:
weighted error vs. iteration number

0 5 10 15 20 25 30 35 40

@ That's because, as t increases, the tokens that are hard to
classify get higher and higher weights, while the easy tokens
count for less and less.

AdaBoost

0O000000e

AdaBoost Testing

Cyan = correct, Magenta =
incorrect, Yellow = detected

Cyan: true, Magenta: false, Yellow: detected

In order to test the trained o
AdaBoost classifier, we use

h(x) — {1 5 ehe(x) > e

0 otherwise

where a; = — In ;.

Summary
°

Outline

@ Summary

Summary
®00

Haar-like Features: Convolutions with Super-low

Computation because of the Integral Image

m
Himl=>" > I[m,n], 1<m<M1<n<N
m'=1n'=1"

m+h n+w
>N [l al) = Him+h, n+wl—1{m, n+w]—[m+h, n]+1i[m, n]

m'=mn’=n

Summary
oeo

The Weak Classifier: Sort the Training Corpus by Feature

Value, Choose the Threshold with Lowest Error

Py — Pr(Error|p; = 1,6;) =

Pr(Error|p; = —1,6;) — Po = Z w;(xi)(2yi — 1)
i:fi(x;)<0;

Summary
ooe

AdaBoost: Each Weak Classifier Tries to Correct the

Mistakes of the Ones that Came Before

fort=1,2,...
© Rescale the weights so they sum to one
@ Find f;, p:, and #; to minimize

€ = Z we(xi)|yi — he(xi)]

© If any training token was correctly classified, decrease its

weight by
€
wer1(x) = Bewe(xi), Br = 1 te
- Gt
The strong classifier is
1 he(x) > 1
h(x) = 20 ‘t(X) 2 20 . ar=—InB
0 otherwise

	Review: Neural Network
	The Face Detection Problem
	Haar-Like Features
	The Weak Classifier
	AdaBoost
	Summary

