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Review: How to train a neural network

@ Find a training dataset that contains n examples showing
the desired output, y;, that the NN should compute in
response to input vector x;:

D = {(x1,¥1),-- -, (Xn,¥n)}

@ Randomly initialize the weights and biases, W1, by, W5, and
b,.

© Perform forward propagation: find out what the neural net
computes as g(x;) for each x;.

@ Define a loss function that measures how badly g(x) differs
from y.

© Perform back propagation to improve W1, b;, W5, and bs.

O Repeat steps 3-5 until convergence.
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Review: Second Layer = Piece-Wise Approximation

The second layer of the network approximates g(x) ~ y using a
bias term b, plus correction vectors wy . j, each scaled by its
activation h;:

g(x) =ba+ Y wa.jh
j

@ Unit-step and signum nonlinearities, on the hidden layer,
cause the neural net to compute a piece-wise constant
approximation of the target function. Sigmoid and tanh are
differentiable approximations of unit-step and signum,
respectively.

@ RelU, Leaky RelLU, and PRelLU activation functions cause h;,
and therefore g(x), to be a piece-wise-linear function of its
inputs.
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Review: First Layer = A Series of Decisions

The first layer of the network decides whether or not to “turn on
each of the h;'s. It does this by comparing x to a series of linear
threshold vectors:

~1 w/, x+b>0
h ZU(W1Tk;X+bk> Lk “
3Ky =~ 0 Vvl’k7:x %‘ bk < O
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Gradient Descent: How do we improve W, and b,?

Given some initial neural net parameter, w;  ;, we want to find a
better value of the same parameter. We do that using gradient
descent:

dl

Wikj < Wikj— nidw, P
K ’J

where 7 is a learning rate (some small constant, e.g., n = 0.001 or
s0).

One step of gradient descent on a complicated error surface
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Error Metrics Summarized

e Use MSE to achieve g(x) — E [y|x]: appropriate for
regression applications.

@ For a binary classifier with a sigmoid output, BCE loss gives
you the MSE result without the vanishing gradient problem.

@ For a multi-class classifier with a softmax output, CE loss
gives you the MSE result without the vanishing gradient
problem.

@ After you're done training, you can make your cell phone app
more efficient by throwing away the uncertainty:

e Replace softmax output nodes with max
e Replace logistic output nodes with unit-step
o Replace tanh output nodes with signum
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Multimedia Inputs = Too Much Data

Does this image contain a cat?

Fully-connected solution:

g(x) =0 (W231 + b2)
a] = RelLU (W1X TF bl)

where x contains all the pixels.

@ Image size 2000 x 3000 x 3 = 18,000, 000
dimensions in X.

@ If a; has 500 dimensions, then W has
500 x 18,000,000 = 9,000, 000,000 parameters.

@ ...so we should use at least 9,000,000, 000
images to train it.
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Shift Invariance

The cat has moved. The fully-connected network has no way to
share information between the rows of W that look at the center
of the image, and the rows that look at the right-hand side.
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How to achieve shift invariance: Convolution

Instead of using vectors as layers, let's use images.

z[l,d,m,n] = ZZZ wll,d,c,m—m',n—nla[l —1,c,m’, n]

c m n

where
e z[l,c,m,n] and a[l, c, m, n] are excitation and activation
(respectively) of the (m, n)*™ pixel, in the ¢ channel, in the
/' Jayer.
o w[l,d,c,m— m',n— n'] are weights connecting c** input
channel to dth output channel, with a shift of m — m’ rows,
n— n’ columns.
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How to achieve shift invariance: Convolution

(=]
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How to use convolutions in a classifier

o The zero'! layer is the input image, where c € {1,2,3}
denotes color (red, green or blue):

al0, ¢, m, n| = x[c, m, n|
@ Excitation and activation:

z[l,d,m,n] = ZZZ wld,c,m—m',n—n'la[l = 1,c,m’, n']
c m n

a[l,d, m,n| = ReLU (z[/, d, m, n])

@ Reshape the last convolutional layer into a vector, to form the
first fully-connected layer:

aj41 =[a[L,1,1,1],a[L,1,1,2],...,a[L,3, M, N]]"

where M x N is the image dimension.
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How to use convolutions in a classifier

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

“Typical CNN,” by Aphex34 2015, CC-SA 4.0, https://commons.wikimedia.org/wiki/File:Typical_cnn.png


https://commons.wikimedia.org/wiki/File:Typical_cnn.png
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How to back-prop through a convolutional neural net

You already know how to back-prop through fully-connected layers.
Now let's back-prop through convolution:

oL B oL oz[l,d, m, n]
da[l —1,c,m',n'] zm:zn:zd: 0z[l,d,m,n] da[l — 1,¢c,m’, n’|

We need to find two things:

Q@ What is %? Answer: We can assume it's already
known, because we have already back-propagated as far as
layer /.

@ What is M'f Answer: That is the new thing that we

h all-1,c,m’,n’]"
need, in orer to back-propagate to layer / — 1.
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How to back-prop through convolution

Here is the formula for convolution:

z[l,d,m,n] = ZZ Z wll,d,c,m—m' n—nla[l —1,c,m’, n]
c m n

If we differentiate the left side w.r.t. the right side, we get:

oz[l,d, m, n]
dall —1,¢c,m', n’]

=wl[l,d,c,m—m',n—n]

Plugging into the formula on the previous slide, we get:

oL B S dL
aa[/_17C,m/,n/] _Zn:zn:;w[/)dycym m,n n]dz[l,d,m,n]
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Convolution forward, Correlation backward

In signal processing, we defined a[n] * w[n] to mean
> w(n'la[n — n’]. Let's use the same symbol to refer to this
multi-channel 2D convolution:

z[l,d, m,n] = ZZZ wl[l,d,c,m—m',n—nla[l = 1,¢c,m’, ]
c m n
= wl[l,m,n,c,d]x h[l —1,¢c, m,n]

Back-propagation looks kind of similar, but notice that now,
instead of >, w[n — n']a[n’], we have Y w[n — n']a[n]:

oL
83[/—1cm "' ZZZW[/dcm o - ]az[ldmn]

In other words, we are summing over the variable on which w[n]
has not been flipped. What is that?
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Convolution versus Correlation

Convolution Cross-correlation Autocorrelation

https://upload.wikimedia.org/wikipedia/commons/thumb/
2/21/Comparison_convolution_correlation.svg/
1024px-Comparison_convolution_correlation.svg.png


https://upload.wikimedia.org/wikipedia/commons/thumb/2/21/Comparison_convolution_correlation.svg/1024px-Comparison_convolution_correlation.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/2/21/Comparison_convolution_correlation.svg/1024px-Comparison_convolution_correlation.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/2/21/Comparison_convolution_correlation.svg/1024px-Comparison_convolution_correlation.svg.png
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Convolution versus Correlation

@ Convolution is when we flip one of the two signals, shift,
multiply, then add:

a[m] x« w[m] = Z w[m — m']a[m']
m/
@ Correlation is when we only shift, multiply, and add:

a[m’ | %ew[m'] = Z w[m — m’]a[m]

m
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The Back-Prop of Convolution is Correlation

oL
aa[l—lcm il ZZZW[Idcm m'n = ]8z[ldmn]

dl

_ ! ! ozl d.m'. n'l
=w[l,d,c,m',n ]*82[/, d,m', ]
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The Back-Prop of Convolution is Correlation

z[l,d,m,n] = w[l,m,n,c,d]*h[l —1,¢c,m,n]

oL dc
— / / /
dall = 1,¢c,m', '] wl 7d’c’m’n]‘k@z[/, d,m' n']
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Back-prop through a convolutional layer

Backprop to 1

Bgckprop to 0

(=]
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Similarities between convolutional and fully-connected

back-prop

@ In a fully-connected layer, forward-prop means multiplying a
matrix by a column vector on the right. Back-prop means
multiplying the same matrix by a row vector from the left:

z,=Wa,_;
oL oL
33/_1 N 82/ !

@ In a convolutional layer, forward-prop is a convolution,
Back-prop is a correlation:

z[l,d,m,n] = w[l,m,n,c,d]*h[l —1,¢c,m,n]
dC dl

— w[l,d,c,m’, ] he—
dh[l —1,¢, m, n] wll. ’c’m’n]*dz[/,d,m’,n’]
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Convolutional layers: Weight gradient

Finally, we need to combine back-prop and forward-prop in order to
find the weight gradient:

d_ B d_ oz[l,d, m, n]
dw[l,d,c,m’,n"] ZZ dz[l,d, m,n] Owll,d, c,m’ ']
m n
Again, here's the formula for convolution:

z[l,d, m,n] = ZZZW[/,d,C, m', na[l —1,c,m—m' n—n]
c m n

If we differentiate the left side w.r.t. the right side, we get:

oz[l,d, m, n] / /
8W[l7 d,c,m, n’] a[ Cm—m,n n]
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Convolutional layers: Weight gradient

oL B dc oz[l,d, m, n]
owll,d,c,m’,n'] zmzzn: dz[l,d, m,n] ow[l,d, c,m’, ']

oz[l,d, m, n]
owll,d,c,m' ']

=a[l—1,c,m—m',n—n']

Putting those together, we discover that the weight gradient is a
correlation:

oL _ oL / /
aw[/,d,c,m/,n/]—zm:;wa[/ Le,m—m'on—n]

B oL
-~ 0z[l,d,m’, 1]

*all —1,¢c,m' n]
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Steps in training a CNN

@ Forward-prop is convolution:
z[l,d,m,nl =w[l,d,c,m,n]*a[l —1,c,m,n|

© Back-prop is correlation:

oL oL
da[l —1,¢,m,n wll,d, ¢, m, n]*(?z[/, d, m, n]

© Weight gradient is correlation:

oL B oL
owl[l,d,c,m,n]  0z[l,d, m,n]

*a[l —1,¢c,m,n]
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Features and PWL Functions

Remember the PWL model of a ReLU neural net:

© The hidden layer activations are positive if some feature is
detected in the input, and zero otherwise.

@ The rows of the output layer are vectors, scaled by the hidden
layer activations, in order to approximate some desired
piece-wise-linear (PWL) output function.

© What happens next is different for regression and
classification:

@ Regression: The PWL output function is the desired output.
@ Classification: The PWL function is squashed down to the
[0,1] range using a sigmoid.
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Features and PWL Functions

In image processing, often we don't care where in the image the
“feature” occurs:
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Features and PWL Functions

Sometimes we care roughly where the feature occurs, but not
exactly. Blue at the bottom is sea, blue at the top is sky:

“Paracas National Reserve,” World Wide Gifts, 2011, CC-SA 2.0,
https://commons.wikimedia.org/wiki/File:Paracas_National_Reserve, _Ica, Peru-3April2011.jpg.
“Clouds above Earth at 10,000 feet,” Jessie Eastland, 2010, CC-SA 4.0,

https://commons.wikimedia.org/wiki/File:Sky-3. jpg.


https://commons.wikimedia.org/wiki/File:Paracas_National_Reserve,_Ica,_Peru-3April2011.jpg
https://commons.wikimedia.org/wiki/File:Sky-3.jpg
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Max Pooling

@ Philosophy: the activation a[/, c, m, n] should be greater than
zero if the corresponding feature is detected anywhere within
the vicinity of pixel (m, n). In fact, let's look for the best
matching input pixel.

@ Equation:
all,c,m,n] = %5% ME% ReLU (z[/,c,mM + m’, nM + n'])
m/: n/:

where M is a max-pooling factor (often M = 2, but not
always).
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Max Pooling

Single depth slice
1 2 3

N = O O

4 6 8
3 1 0
1 2 4

W

Y

“max pooling with 2x2 filter and stride = 2,” Aphex34, 2015, CC SA 4.0,

https://commons.wikimedia.org/wiki/File:Max_pooling.png


https://commons.wikimedia.org/wiki/File:Max_pooling.png
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Back-Prop for Max Pooling

The back-prop is pretty easy to understand. The activation
gradient, Wﬁmn] is back-propagated to just one of the excitation
gradients in its pool: the one that had the maximum value.

(m/, ”/) - (m*v n*)

or __oL
_ ) da[l,c,m,n] a[/, c,m, n] >0

oz[l,c,mM + m’', nM + '

otherwise,

where:

M—1
(m*, n*) = argmaxargmax z[/, ¢, MM + m', nM + n]
m'=0 n'=0
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Other types of pooling

o Average pooling:

;] Mim
all,c,m,n] = v Z Z ReLU (z[/,c,mM + m', nM + n'])

m’=0 n"=0

Philosophy: instead of finding the pixels that best match the
feature, find the average degree of match.

e Decimation pooling:
a[l, ¢, m,n] = ReLU (z[l, ¢, mM, nM])

Philosophy: the convolution has already done the averaging
for you, so it's OK to just throw away the other M? — 1 inputs.
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“Phone Recognition: Neural 'E
Networks vs. Hidden Markov integration

Models,” Waibel, Hanazawa,
Hinton, Shikano and Lang, The gt
1988 s\ —

@ 1D convolution

@ average pooling

" o)

@ max pooling invented by
Yamaguchi et al., 1990,

based on this architecture
Image copyright Waibel et al., 1988, released
CC-BY-4.0 2018,
https://commons.wikimedia.org/wiki/File:
TDNN_Diagram.png

15 frames
10 msec frame rate



https://commons.wikimedia.org/wiki/File:TDNN_Diagram.png
https://commons.wikimedia.org/wiki/File:TDNN_Diagram.png
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“Backpropagation Applied to Handwritten Zip Code
Recognition,” LeCun, Boser, Denker & Henderson, 1989

(2D convolution, decimation pooling)

i o dxdt FL

Lot f“ 0 72@ExS FH3

Sd@I2x 12 HZ

A@2Ix2Z T

2EX2E INPUT

Image copyright Lecun, Boser, et al., 1990
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“Imagenet Classification with Deep Convolutional Neural

Networks,” Krizhevsky, Sutskever & Hinton, 2012 (GPU
training)

3 —
3
192 28 204¢ 2038 \dense
\ 13
13 dense dense]
1000
192 128 Max ol L]
Max 128 Max pooling ¢ 048
pooling pooling

Image copyright Krizhevsky, Sutskever & Hinton, 2012
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Summary

@ Convolutional layers: forward-prop is a convolution, back-prop
is a correlation, weight gradient is a correlation.

@ Max pooling: back-prop just propagates the derivative to the
pixel that was chosen by forward-prop.

@ Many-layer CNNs trained on GPUs, with small convolutions in
each layer, have won Imagenet every year since 2012, and are
now a component in every image, speech, audio, and video
processing system.
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Written Example

Suppose our input image is a delta function:
x[n] = 6[n]

Suppose we have one convolutional layer, and the weights are
initialized to be Gaussian:

N

wln] =e 7

Suppose that the neural net output is
g(x) = o (max (w[n] x x[n])),

where o(+) is the logistic sigmoid, and max(+) is max-pooling over
the entire output of the convolution. Suppose that the target
output is y = 1, and we are using binary cross-entropy loss. What
is dL/dw|n], as a function of n?
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