Review	Convolution	Backprop	Max Pooling	Papers	Summary	Example

Lecture 9: Convolutional Neural Nets

Mark Hasegawa-Johnson These slides are in the public domain

ECE 417: Multimedia Signal Processing, Fall 2023

Review	Convolution	Backprop	Max Pooling	Papers	Summary	Example

- 2 Convolutional Layers
- 3 Backprop of Convolution is Correlation
- 4 Max Pooling
- 5 A Few Important Papers
- 6 Summary
- 7 Written Example

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Review	Convolution	Backprop	Max Pooling	Papers	Summary	Example
●00000	0000000	0000000000000	00000000	0000	00	00
Outlin	e					

- Review: Neural Network
- 2 Convolutional Layers
- 3 Backprop of Convolution is Correlation
- 4 Max Pooling
- **5** A Few Important Papers
- 6 Summary
- Written Example

Review Convolution Backprop Max Pooling Papers Summary Example occorrections How to train a neural network

Find a training dataset that contains n examples showing the desired output, y_i, that the NN should compute in response to input vector x_i:

$$\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n)\}$$

- Randomly initialize the weights and biases, W₁, b₁, W₂, and b₂.
- Perform forward propagation: find out what the neural net computes as g(x_i) for each x_i.
- Oefine a loss function that measures how badly g(x) differs from y.
- **(**) Perform **back propagation** to improve W_1 , b_1 , W_2 , and b_2 .
- Repeat steps 3-5 until convergence.

Review
cooocoConvolution
cooocoBackprop
coocococoMax Pooling
coocococoPapers
coocoSummary
coExample
coReview:SecondLayerPiece-WiseApproximation

The second layer of the network approximates $\mathbf{g}(\mathbf{x}) \approx \mathbf{y}$ using a bias term **b**, plus correction vectors $\mathbf{w}_{2,:,j}$, each scaled by its activation h_j :

$$\mathbf{g}(\mathbf{x}) = \mathbf{b}_2 + \sum_j \mathbf{w}_{2,:,j} h_j$$

- Unit-step and signum nonlinearities, on the hidden layer, cause the neural net to compute a piece-wise constant approximation of the target function. Sigmoid and tanh are differentiable approximations of unit-step and signum, respectively.
- ReLU, Leaky ReLU, and PReLU activation functions cause h_j, and therefore g(x), to be a piece-wise-linear function of its inputs.

The first layer of the network decides whether or not to "turn on" each of the h_j 's. It does this by comparing **x** to a series of linear threshold vectors:

$$h_{k} = \sigma \left(\mathbf{w}_{1,k,:}^{T} \mathbf{x} + b_{k} \right) \begin{cases} \approx 1 & \mathbf{w}_{1,k,:}^{T} \mathbf{x} + b_{k} > 0 \\ \approx 0 & \mathbf{w}_{1,k,:}^{T} \mathbf{x} + b_{k} < 0 \end{cases}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Review
coorderConvolution
occorderBackprop
coorderMax Pooling
coorderPapers
coorderSummary
coorderExample
coorderGradient Descent: How do we improve W1 and b1?

Given some initial neural net parameter, $w_{l,k,j}$, we want to find a better value of the same parameter. We do that using gradient descent:

$$w_{l,k,j} \leftarrow w_{l,k,j} - \eta \frac{d\mathcal{L}}{dw_{l,k,j}},$$

where η is a learning rate (some small constant, e.g., $\eta = 0.001$ or so).

One step of gradient descent on a complicated error surface

- Use MSE to achieve g(x) → E [y|x]: appropriate for regression applications.
- For a binary classifier with a sigmoid output, BCE loss gives you the MSE result without the vanishing gradient problem.
- For a multi-class classifier with a softmax output, CE loss gives you the MSE result without the vanishing gradient problem.
- After you're done training, you can make your cell phone app more efficient by throwing away the uncertainty:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Replace softmax output nodes with max
- Replace logistic output nodes with unit-step
- Replace tanh output nodes with signum

Review	Convolution	Backprop	Max Pooling	Papers	Summary	Example
000000	●○○○○○○	0000000000000	00000000	0000	00	00
Outlin	е					

- Review: Neural Network
- 2 Convolutional Layers
- 3 Backprop of Convolution is Correlation
- 4 Max Pooling
- **5** A Few Important Papers
- 6 Summary
- Written Example

Multimedia Inputs = Too Much Data

Does this image contain a cat?

Fully-connected solution:

 $\begin{aligned} \mathbf{g}(\mathbf{x}) &= \sigma \left(\mathbf{W}_2 \mathbf{a}_1 + \mathbf{b}_2 \right) \\ \mathbf{a}_1 &= \mathsf{ReLU} \left(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1 \right) \end{aligned}$

where x contains all the pixels.

- Image size 2000 × 3000 × 3 = 18,000,000 dimensions in x.
- If \mathbf{a}_1 has 500 dimensions, then \mathbf{W}_1 has 500 \times 18,000,000 = 9,000,000,000 parameters.
- ... so we should use at least 9,000,000,000 images to train it.

	•••••••	00000000000000000	0000000	0000	00	00
Shift Ir	ivariance					

The cat has moved. The fully-connected network has no way to share information between the rows of W_1 that look at the center of the image, and the rows that look at the right-hand side.

Instead of using vectors as layers, let's use images.

$$z[l, d, m, n] = \sum_{c} \sum_{m'} \sum_{n'} w[l, d, c, m - m', n - n'] a[l - 1, c, m', n']$$

where

- z[l, c, m, n] and a[l, c, m, n] are excitation and activation (respectively) of the (m, n)th pixel, in the cth channel, in the lth layer.
- w[I, d, c, m m', n n'] are weights connecting c^{th} input channel to d^{th} output channel, with a shift of m m' rows, n n' columns.

How to	achieve	shift invaria	nce: Con	olution		
Review	Convolution	Backprop	Max Pooling	Papers	Summary	Example
000000		0000000000000	00000000	0000	00	00

・ロト・雪・・雪・・雪・・白・

Review Convolution Backprop Max Pooling Papers Summary Example occose oc

 The zeroth layer is the input image, where c ∈ {1, 2, 3} denotes color (red, green or blue):

$$a[0, c, m, n] = x[c, m, n]$$

• Excitation and activation:

$$z[l, d, m, n] = \sum_{c} \sum_{m'} \sum_{n'} w[d, c, m - m', n - n'] a[l - 1, c, m', n']$$
$$a[l, d, m, n] = \text{ReLU}(z[l, d, m, n])$$

• Reshape the last convolutional layer into a vector, to form the first fully-connected layer:

$$\mathbf{a}_{L+1} = [a[L, 1, 1, 1], a[L, 1, 1, 2], \dots, a[L, 3, M, N]]^T$$

where $M \times N$ is the image dimension.

"Typical CNN," by Aphex34 2015, CC-SA 4.0, https://commons.wikimedia.org/wiki/File:Typical_cnn.png

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Review	Convolution	Backprop	Max Pooling	Papers	Summary	Example
000000	0000000	●000000000000	00000000	0000	00	00
Outlin	е					

- Review: Neural Network
- 2 Convolutional Layers
- 3 Backprop of Convolution is Correlation
- 4 Max Pooling
- **5** A Few Important Papers
- 6 Summary
- Written Example

Review Convolution Backprop Max Pooling Papers Summary Example 000000 000000000000 0000000000 0000 0000 0000 0000 0000 How to back-prop through a convolutional neural net 0000 0000 0000 0000 0000

You already know how to back-prop through fully-connected layers. Now let's back-prop through convolution:

$$\frac{\partial \mathcal{L}}{\partial a[l-1,c,m',n']} = \sum_{m} \sum_{n} \sum_{d} \frac{\partial \mathcal{L}}{\partial z[l,d,m,n]} \frac{\partial z[l,d,m,n]}{\partial a[l-1,c,m',n']}$$

We need to find two things:

- What is <u>∂L</u>? Answer: We can assume it's already known, because we have already back-propagated as far as layer *I*.
- Solution What is $\frac{\partial z[I,d,m,n]}{\partial a[I-1,c,m',n']}$? Answer: That is the new thing that we need, in orer to back-propagate to layer I 1.

Review Convolution Backprop Max Pooling Papers Summary Example 000000 000000000 00000000 0000 0000 000 00 How to back-prop through convolution

Here is the formula for convolution:

$$z[l, d, m, n] = \sum_{c} \sum_{m'} \sum_{n'} w[l, d, c, m - m', n - n'] a[l - 1, c, m', n']$$

If we differentiate the left side w.r.t. the right side, we get:

$$\frac{\partial z[l,d,m,n]}{\partial a[l-1,c,m',n']} = w[l,d,c,m-m',n-n']$$

Plugging into the formula on the previous slide, we get:

$$\frac{\partial \mathcal{L}}{\partial a[l-1,c,m',n']} = \sum_{m} \sum_{n} \sum_{d} w[l,d,c,m-m',n-n'] \frac{d\mathcal{L}}{dz[l,d,m,n]}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Review
 Convolution
 Backprop
 Max Pooling
 Papers
 Summary
 Example

 0000000
 00000000
 00000000
 0000
 0000
 000
 00

 Convolution forward, Correlation backward

In signal processing, we defined a[n] * w[n] to mean $\sum w[n']a[n - n']$. Let's use the same symbol to refer to this multi-channel 2D convolution:

$$z[l, d, m, n] = \sum_{c} \sum_{m'} \sum_{n'} w[l, d, c, m - m', n - n'] a[l - 1, c, m', n']$$

$$\equiv w[l, m, n, c, d] * h[l - 1, c, m, n]$$

Back-propagation looks kind of similar, but notice that now, instead of $\sum_{n'} w[n - n']a[n']$, we have $\sum_{n} w[n - n']a[n]$:

$$\frac{\partial \mathcal{L}}{\partial a[l-1,c,m',n']} = \sum_{m} \sum_{n} \sum_{c} w[l,d,c,m-m',n-n'] \frac{\partial \mathcal{L}}{\partial z[l,d,m,n]}$$

In other words, we are summing over the variable on which w[n] has **not been flipped**. What is that?

https://upload.wikimedia.org/wikipedia/commons/thumb/ 2/21/Comparison_convolution_correlation.svg/ 1024px-Comparison_convolution_correlation.svg.png

• Convolution is when we flip one of the two signals, shift, multiply, then add:

$$a[m] * w[m] = \sum_{m'} w[m-m']a[m']$$

• Correlation is when we only shift, multiply, and add:

$$a[m']\bigstar w[m'] = \sum_m w[m-m']a[m]$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$\frac{\partial \mathcal{L}}{\partial a[l-1,c,m',n']} = \sum_{m} \sum_{n} \sum_{c} w[l,d,c,m-m',n-n'] \frac{\partial \mathcal{L}}{\partial z[l,d,m,n]}$$
$$= w[l,d,c,m',n'] \bigstar \frac{d\mathcal{L}}{\partial z[l,d,m',n']}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

$$z[l, d, m, n] = w[l, m, n, c, d] * h[l - 1, c, m, n]$$

$$\frac{\partial \mathcal{L}}{\partial a[l-1,c,m',n']} = w[l,d,c,m',n'] \bigstar \frac{d\mathcal{L}}{\partial z[l,d,m',n']}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Back-r	oron thro	ugh a convol	utional la	Jer		
Review	Convolution	Backprop	Max Pooling	Papers	Summary	Example
000000	0000000	0000000000000	00000000	0000	00	00

Review Convolution Backprop Max Pooling Papers Summary Convolution Backprop Convolutional and fully-connected back-prop

• In a fully-connected layer, forward-prop means multiplying a matrix by a column vector on the right. Back-prop means multiplying the same matrix by a row vector from the left:

$$\mathbf{z}_{l} = \mathbf{W}_{l} \mathbf{a}_{l-1}$$
$$\frac{\partial \mathcal{L}}{\partial \mathbf{a}_{l-1}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}_{l}} \mathbf{W}_{l}$$

• In a convolutional layer, forward-prop is a convolution, Back-prop is a correlation:

$$\begin{aligned} & z[l, d, m, n] = w[l, m, n, c, d] * h[l - 1, c, m, n] \\ & \frac{d\mathcal{L}}{dh[l - 1, c, m, n]} = w[l, d, c, m', n'] \bigstar \frac{d\mathcal{L}}{dz[l, d, m', n']} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review Convolution Backprop Max Pooling Papers Summary Example Convolutional layers: Weight gradient

Finally, we need to combine back-prop and forward-prop in order to find the weight gradient:

$$\frac{d\mathcal{L}}{dw[l,d,c,m',n']} = \sum_{m} \sum_{n} \frac{d\mathcal{L}}{dz[l,d,m,n]} \frac{\partial z[l,d,m,n]}{\partial w[l,d,c,m',n']}$$

Again, here's the formula for convolution:

$$z[l, d, m, n] = \sum_{c} \sum_{m'} \sum_{n'} w[l, d, c, m', n'] a[l-1, c, m-m', n-n']$$

If we differentiate the left side w.r.t. the right side, we get:

$$\frac{\partial z[l,d,m,n]}{\partial w[l,d,c,m',n']} = a[l-1,c,m-m',n-n']$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$\frac{\partial \mathcal{L}}{\partial w[l,d,c,m',n']} = \sum_{m} \sum_{n} \frac{d\mathcal{L}}{dz[l,d,m,n]} \frac{\partial z[l,d,m,n]}{\partial w[l,d,c,m',n']}$$

$$\frac{\partial z[l,d,m,n]}{\partial w[l,d,c,m',n']} = a[l-1,c,m-m',n-n']$$

Putting those together, we discover that the weight gradient is a correlation:

$$\frac{\partial \mathcal{L}}{\partial w[l, d, c, m', n']} = \sum_{m} \sum_{n} \frac{\partial \mathcal{L}}{\partial z[l, d, m, n]} a[l-1, c, m-m', n-n']$$
$$= \frac{\partial \mathcal{L}}{\partial z[l, d, m', n']} \bigstar a[l-1, c, m', n']$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Forward-prop is convolution:

$$z[l, d, m, n] = w[l, d, c, m, n] * a[l - 1, c, m, n]$$

2 Back-prop is correlation:

$$\frac{\partial \mathcal{L}}{\partial a[l-1,c,m,n]} = w[l,d,c,m,n] \bigstar \frac{\partial \mathcal{L}}{\partial z[l,d,m,n]}$$

Weight gradient is correlation:

$$\frac{\partial \mathcal{L}}{\partial w[l,d,c,m,n]} = \frac{\partial \mathcal{L}}{\partial z[l,d,m,n]} \bigstar a[l-1,c,m,n]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Outlin	е					
Review	Convolution	Backprop	Max Pooling	Papers	Summary	Example
000000	0000000	000000000000		0000	00	00

- 1 Review: Neural Network
- 2 Convolutional Layers
- 3 Backprop of Convolution is Correlation
- 4 Max Pooling
- **5** A Few Important Papers
- 6 Summary
- Written Example

Remember the PWL model of a ReLU neural net:

- The hidden layer activations are positive if some feature is detected in the input, and zero otherwise.
- The rows of the output layer are vectors, scaled by the hidden layer activations, in order to approximate some desired piece-wise-linear (PWL) output function.
- What happens next is different for regression and classification:
 - **1** Regression: The PWL output function is the desired output.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Classification: The PWL function is squashed down to the [0,1] range using a sigmoid.

In image processing, often we don't care where in the image the "feature" occurs:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Sometimes we care **roughly** where the feature occurs, but not exactly. Blue at the bottom is sea, blue at the top is sky:

"Paracas National Reserve," World Wide Gifts, 2011, CC-SA 2.0,

https://commons.wikimedia.org/wiki/File:Paracas_National_Reserve,_Ica,_Peru-3April2011.jpg. "Clouds above Earth at 10,000 feet," Jessie Eastland, 2010, CC-SA 4.0,

https://commons.wikimedia.org/wiki/File:Sky-3.jpg.

- Philosophy: the activation a[l, c, m, n] should be greater than zero if the corresponding feature is detected anywhere within the vicinity of pixel (m, n). In fact, let's look for the *best matching* input pixel.
- Equation:

$$a[I, c, m, n] = \max_{m'=0}^{M-1} \max_{n'=0}^{M-1} \text{ReLU} \left(z[I, c, mM + m', nM + n'] \right)$$

where M is a max-pooling factor (often M = 2, but not always).

Review	Convolution	Backprop	Max Pooling	Papers	Summary	Example
000000	0000000	0000000000000	○○○○○●○○	0000	00	00
Max F	Pooling					

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

"max pooling with 2x2 filter and stride = 2," Aphex34, 2015, CC SA 4.0,

https://commons.wikimedia.org/wiki/File:Max_pooling.png

Review Convolution Backprop Max Pooling Papers Summary Example Observed Observed Observed Observed Observed Observed Observed Observed Back-Prop for Max Pooling Vacuum Observed Observed Observed Observed Observed

The back-prop is pretty easy to understand. The activation gradient, $\frac{\partial \mathcal{L}}{\partial a[l,c,m,n]}$, is back-propagated to just one of the excitation gradients in its pool: the one that had the maximum value.

$$\frac{\partial \mathcal{L}}{\partial z[l, c, mM + m', nM + n']} = \begin{cases} \frac{\partial \mathcal{L}}{\partial a[l, c, m, n]} & a[l, c, m, n] > 0\\ 0 & \text{otherwise}, \end{cases}$$

where:

$$(m^*, n^*) = \underset{m'=0}{\operatorname{argmax}} \underset{n'=0}{\overset{M-1}{\operatorname{argmax}}} z[l, c, mM + m', nM + n']$$

Review Convolution Backprop Max Pooling Papers Summary Example 0000000 00000000 00000000 0000 0000 0000 0000 Other types of pooling 0000 0000 0000 0000 0000

• Average pooling:

$$a[l, c, m, n] = \frac{1}{M^2} \sum_{m'=0}^{M-1} \sum_{n'=0}^{M-1} \text{ReLU} \left(z[l, c, mM + m', nM + n'] \right)$$

Philosophy: instead of finding the pixels that best match the feature, find the average degree of match.

• Decimation pooling:

$$a[l, c, m, n] = \text{ReLU}(z[l, c, mM, nM])$$

Philosophy: the convolution has already done the averaging for you, so it's OK to just throw away the other $M^2 - 1$ inputs.

Review	Convolution	Backprop	Max Pooling	Papers	Summary	Example
000000	0000000	0000000000000	00000000	●○○○	00	00
Outlin	e					

- Review: Neural Network
- 2 Convolutional Layers
- Backprop of Convolution is Correlation
- 4 Max Pooling
- 5 A Few Important Papers
- 6 Summary
- Written Example

 Review
 Convolution
 Backprop
 Max Pooling
 Papers
 Summary
 Example

 000000
 0000000
 00000000
 0000000
 0
 00
 00

"Phone Recognition: Neural Networks vs. Hidden Markov Models," Waibel, Hanazawa, Hinton, Shikano and Lang, 1988

- 1D convolution
- average pooling
- max pooling invented by Yamaguchi et al., 1990, based on this architecture Image copyright Waibel et al., 1988, released CC-BY-4.0 2018, https://commons.wikimedia.org/wiki/File: TDNN_Diagram.png

Image copyright Lecun, Boser, et al., 1990

イロト 不得 トイヨト イヨト

= 9Q@

Image copyright Krizhevsky, Sutskever & Hinton, 2012

Review	Convolution	Backprop	Max Pooling	Papers	Summary	Example
000000	0000000	0000000000000	00000000	0000	●○	00
Outlin	е					

- 1 Review: Neural Network
- 2 Convolutional Layers
- Backprop of Convolution is Correlation
- 4 Max Pooling
- **5** A Few Important Papers

Review	Convolution	Backprop	Max Pooling	Papers	Summary	Example			
000000	0000000	0000000000000	00000000	0000	○●	00			
Summary									

- Convolutional layers: forward-prop is a convolution, back-prop is a correlation, weight gradient is a correlation.
- Max pooling: back-prop just propagates the derivative to the pixel that was chosen by forward-prop.
- Many-layer CNNs trained on GPUs, with small convolutions in each layer, have won Imagenet every year since 2012, and are now a component in every image, speech, audio, and video processing system.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Review	Convolution	Backprop	Max Pooling	Papers	Summary	Example
000000	0000000	0000000000000	00000000	0000	00	●○
Outlin	е					

- Review: Neural Network
- 2 Convolutional Layers
- Backprop of Convolution is Correlation
- 4 Max Pooling
- **5** A Few Important Papers
- 6 Summary

 Review
 Convolution
 Backprop
 Max Pooling
 Papers
 Summary
 Example

 Written Example

Suppose our input image is a delta function:

$$x[n] = \delta[n]$$

Suppose we have one convolutional layer, and the weights are initialized to be Gaussian:

$$w[n] = e^{-\frac{n^2}{2}}$$

Suppose that the neural net output is

$$\mathbf{g}(\mathbf{x}) = \sigma \left(\max \left(w[n] * x[n] \right) \right),$$

where $\sigma(\cdot)$ is the logistic sigmoid, and max(\cdot) is max-pooling over the entire output of the convolution. Suppose that the target output is y = 1, and we are using binary cross-entropy loss. What is $d\mathcal{L}/dw[n]$, as a function of n?