
Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Lecture 17: Neural Nets

Mark Hasegawa-Johnson
These slides are in the public domain.

ECE 417: Multimedia Signal Processing, Fall 2023

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

1 Intro

2 Classification Example: Arbitrary Classifier

3 Regression Example: Semicircle → Parabola

4 Scalar Nonlinearities

5 Loss Functions

6 Learning: Gradient Descent

7 Back-Propagation

8 Backprop Example: Semicircle → Parabola

9 Summary

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Outline

1 Intro

2 Classification Example: Arbitrary Classifier

3 Regression Example: Semicircle → Parabola

4 Scalar Nonlinearities

5 Loss Functions

6 Learning: Gradient Descent

7 Back-Propagation

8 Backprop Example: Semicircle → Parabola

9 Summary

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

What is a Neural Network?

Computation in biological neural networks is performed by
billions of simple cells (neurons), each of which performs one
very simple computation.

Biological neural networks learn by strengthening the
connections between some pairs of neurons, and weakening
other connections.

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

What is an Artificial Neural Network?

Computation in an artificial neural network is performed by
millions of simple cells (nodes), each of which performs one
very simple computation.

Artificial neural networks learn by strengthening the
connections between some pairs of nodes, and weakening
other connections.

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Two-Layer Feedforward Neural Network

1
x1 x2 . . . xm0 a0 = x is the input vector

z1,1 z1,2 . . . z1,m1 z1 = W1x + b1

1 a1,1 a1,2 . . . a1,m1 a1 = f1(z1)

z2,1 z2,2 . . . z2,m2 z2 = W2a1 + b2

g1 g2 . . . gm2 g(x) = a2 = f2(z2)

L = E [− ln Pr(y|g(x))]

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Why use neural nets?

Barron (1993) showed that a neural net is a universal
approximator: it can approximate any function arbitrarily well, if
the number of hidden nodes is large enough. Assume:

Linear output nodes: g(x) = a2 = z2

Hidden nodes are n smooth scalar nonlinearities:

a1,k = f1(z1,k), 1 ≤ k ≤ m1, where
∂a1,k

∂z1,k
is finite

Smooth target function: The target vectors y are all
computed by some function y(x) that is unknown but smooth
(its Fourier transform has finite first moment)

Then: max
y(x)

min
g(x)

E
[
‖y(x)− g(x)‖2

]
≤ O

{
1

m1

}

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Outline

1 Intro

2 Classification Example: Arbitrary Classifier

3 Regression Example: Semicircle → Parabola

4 Scalar Nonlinearities

5 Loss Functions

6 Learning: Gradient Descent

7 Back-Propagation

8 Backprop Example: Semicircle → Parabola

9 Summary

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Target: Can we get the neural net to compute this
function?

Suppose our goal is to find some weights and biases, W1, b1, W2,
and b2 so that the output activation is a scalar binary classifier
that classifies every pixel x = [x1, x2] as being either “red” or
“blue,” where the ground truth is shown in this picture:

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

First Layer Excitation: z1 = b1 + W1x

The first layer of the neural net just computes a linear function of
x. Here’s an example:

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

First Layer Activation: a1 = tanh(z1)

The activation nonlinearity then “squashes” the linear function:

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Second Layer Excitation: z2 = b2 + wT
2 a1

The second layer then computes a linear combination of the
first-layer activations:

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Second Layer Activation: a2 = u(z2)

The second layer activation is then just a binary threshold, a2 = 1
if z2 > 0, otherwise a2 = 0:

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Outline

1 Intro

2 Classification Example: Arbitrary Classifier

3 Regression Example: Semicircle → Parabola

4 Scalar Nonlinearities

5 Loss Functions

6 Learning: Gradient Descent

7 Back-Propagation

8 Backprop Example: Semicircle → Parabola

9 Summary

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Example #2: Semicircle → Parabola

Can we design a neural net that converts a semicircle
(x2

1 + x2
2 = 1) to a parabola (y2 = y2

1)?

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Two-Layer Feedforward Neural Network

1
x1 x2 . . . xm0 a0 = x is the input vector

z1,1 z1,2 . . . z1,m1 z1 = W1x + b1

1 a1,1 a1,2 . . . a1,m1 a1 = f1(z1)

z2,1 z2,2 . . . z2,m2 z2 = W2a1 + b2

g1 g2 . . . gm2 g(x) = a2 = f2(z2)

L = E [− ln Pr(y|g(x))]

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Example #2: Semicircle → Parabola

Let’s define some notation:

Second Layer: Define w2,:,j =

[
w2,1,j

w2,n,j

]
, the j th column of

the W2 matrix, so that

W2 = [w2,:,1,w2,:,2]

First Layer Excitation: Define wT
1,k,: = [w1,k,1, . . . ,w1,k,m],

the kth row of the W1 matrix, so that

W1 =

[
wT

1,1,:

wT
1,2,:

]

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Piece-Wise Constant Approximation

Suppose we want the NN to calculate a piece-wise constant
approximation: The second layer of the network approximates y
using a bias term b2, plus correction vectors w2,:,j , each scaled by
its activation a1,j :

g(x) = b2 +
∑
j

w2,:,ja1,j

The first layer of the network decides whether or not to “turn on”
each of the a1,j ’s. It does this by comparing x to a series of linear
threshold vectors:

a1,j = σ
(

wT
1,k,:x

)
≈

{
1 wT

1,k,:x > 0

0 wT
1,k,:x < 0

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Example #2: Semicircle → Parabola

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Example #2: Semicircle → Parabola

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Example #2: Semicircle → Parabola

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Example #2: Semicircle → Parabola

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Example #2: Semicircle → Parabola

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Example #2: Semicircle → Parabola

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Example #2: Semicircle → Parabola

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Example #2: Semicircle → Parabola

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Example #2: Semicircle → Parabola

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Outline

1 Intro

2 Classification Example: Arbitrary Classifier

3 Regression Example: Semicircle → Parabola

4 Scalar Nonlinearities

5 Loss Functions

6 Learning: Gradient Descent

7 Back-Propagation

8 Backprop Example: Semicircle → Parabola

9 Summary

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Scalar Nonlinearities

A layer might have a vector nonlinearity, al = fl(zl), in which
case every element of al depends on every element of zl .
These are used rarely, because they’re rarely necessary, and
computation is hard. The only one of these we’ll ever use is
the softmax.

Most NN nonlinearities are scalar, al = fl(zl), which means
that  al ,1

...
al ,ml

 =

 fl(zl ,1)
...

fl(zl ,ml
)



Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

The Basic Scalar
Nonlinearity: Unit Step
(a.k.a. Heaviside function)

u (z) =

{
1 z > 0

0 z < 0

Pros and Cons of the Unit Step

Pro: It gives exactly piece-wise
constant approximation of any
desired y .

Con: It’s not differentiable, so we
won’t be able to use gradient
descent to learn the network weights.

The derivative of the unit step is called
the Dirac delta function, ∂u

∂z = δ(z),
where δ(z) is defined to be the function
such that δ(0) =∞, δ(z) = 0 for any
z 6= 0, and∫ ε

−ε
δ(z)dz = 1 ∀ε ∈ <+

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

The Differentiable Approximation:
Logistic Sigmoid

σ(z) =
1

1 + e−z

Why to use the logistic function

σ(z) =


1 z →∞
0 z → −∞
in between in between

and σ(z) is smoothly differentiable,
so we can use gradient descent for
training.

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Derivative of a sigmoid

The derivative of a sigmoid is pretty easy to calculate:

σ(z) =
1

1 + e−z
,

dσ

dz
=

e−z

(1 + e−z)2

An interesting fact that’s extremely useful, in computing
back-prop, is that we can write the derivative in terms of σ(z),
without any need to store z :

dσ

dz
=

e−z

(1 + e−z)2

=

(
1

1 + e−z

)(
e−z

1 + e−z

)
=

(
1

1 + e−z

)(
1− 1

1 + e−z

)
= σ(z)(1− σ(z))

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Step function and its derivative

The derivative of the step
function is the Dirac delta,
which is not very useful in
gradient descent

Logistic function and its derivative

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Signum and Tanh

The signum function is like the unit step, but two-sided. It is used
if, for some reason, you want your output to be y ∈ {−1, 1},
instead of y ∈ {0, 1}:

sign(z) =

{
−1 z < 0

1 z > 0

It is usually approximated by the hyperbolic tangent function
(tanh), which is just a scaled shifted version of the sigmoid:

tanh(z) =
ez − e−z

ez + e−z
=

1− e−2z

1 + e−2z
= 2σ(2z)− 1

and which has a scaled version of the sigmoid derivative:

d tanh(z)

dz
=
(
1− tanh2(z)

)

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Signum function and its derivative

The derivative of the signum
function is 2δ(z), which is not
very useful in gradient descent.

Tanh function and its derivative

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

The sigmoid has a surprising problem: for large values of w ,
∂σ(wx)
∂w → 0.

When we begin training, we start with small values of w .
∂σ(wx)
∂w is reasonably large, so gradient descent works well for

training.

If we have lots of training tokens with similar target values,
then the gradient (∂L∂w) is similar for all of them. Gradient

descent adds up many of these values as w ← w − ∂L
∂w . After

a few such examples, w gets very large. At that point,
∂σ(wx)
∂w → 0, and training effectively stops.

After that point, even if the neural net sees new training data
that don’t match what it has already learned, it can no longer
change. We say that it has suffered from the “vanishing
gradient problem.”

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

A solution to the vanishing gradient problem: ReLU

The most ubiquitous solution to the vanishing gradient problem is
to use a ReLU (rectified linear unit) instead of a sigmoid. The
ReLU is given by

ReLU(z) =

{
z z ≥ 0

0 z ≤ 0,

and its derivative is the unit step. Notice that the unit step is
equally large (u(wx) = 1) for any positive value (wx > 0), so no
matter how large w gets, back-propagation continues to work.

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

A solution to the vanishing gradient problem: ReLU

Pro: The ReLU derivative is equally large (dReLU(wx)
d(wx) = 1)

for any positive value (wx > 0), so no matter how large w
gets, back-propagation continues to work.

Con: If the ReLU is used as a hidden unit (aj = ReLU(zj)),
then your output is no longer a piece-wise constant
approximation of y. It is now piece-wise linear.

On the other hand, maybe piece-wise linear is better than
piece-wise constant, so. . .

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

A solution to the vanishing gradient problem: the ReLU

Pro: The ReLU derivative is equally large (dReLU(wx)
d(wx) = 1)

for any positive value (wx > 0), so no matter how large w
gets, back-propagation continues to work.

Pro: If the ReLU is used as a hidden unit (aj = ReLU(zj)),
then your output is no longer a piece-wise constant
approximation of y. It is now piece-wise linear.

Con: ??

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

The dying ReLU problem

Pro: The ReLU derivative is equally large (dReLU(wx)
d(wx) = 1)

for any positive value (wx > 0), so no matter how large w
gets, back-propagation continues to work.

Pro: If the ReLU is used as a hidden unit (aj = ReLU(zj)),
then your output is no longer a piece-wise constant
approximation of y. It is now piece-wise linear.

Con: If wx + b < 0, then (dReLU(wx)
d(wx) = 0), and learning

stops. In the worst case, if b becomes very negative, then all
of the hidden nodes are turned off—the network computes
nothing, and no learning can take place! This is called the
“Dying ReLU problem.”

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Solutions to the Dying ReLU problem

Softplus: Pro: always positive. Con: gradient→ 0 as
x → −∞.

f (x) = ln (1 + ex)

Leaky ReLU: Pro: gradient constant, output piece-wise
linear. Con: negative part might fail to match your dataset.

f (x) =

{
x x ≥ 0

0.01x x ≤ 0

Parametric ReLU (PReLU:) Pro: gradient constant, ouput
PWL. The slope of the negative part (a) is a trainable
parameter, so can adapt to your dataset. Con: you have to
train it.

f (x) =

{
x x ≥ 0

ax x ≤ 0

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Outline

1 Intro

2 Classification Example: Arbitrary Classifier

3 Regression Example: Semicircle → Parabola

4 Scalar Nonlinearities

5 Loss Functions

6 Learning: Gradient Descent

7 Back-Propagation

8 Backprop Example: Semicircle → Parabola

9 Summary

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

How to train a neural network

1 Find a training dataset that contains n examples showing
the desired output, yi , that the NN should compute in
response to input vector xi :

D = {(x1, y1), . . . , (xn, yn)}

2 Randomly initialize W1, b1, W2, and b2.

3 Perform forward propagation: find out what the neural net
computes as g(xi) for each xi .

4 Define a loss function that measures how badly g(xi) differs
from yi .

5 Perform back propagation to find the derivatives of the loss
w.r.t. a1, z1, a2, and z2.

6 Calculate the loss gradients ∂L
∂W1

, ∂L
∂b1

, ∂L
∂W2

, and ∂L
∂b2

.

7 Perform gradient descent to improve W1, b1, W2, and b2.

8 Repeat steps 3-6 until convergence.

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Loss Functions in General: Probability

We want g(x) to give us as much information as possible
about y. We formalize that by interpreting g(x) as some kind
of probability model, and by maximizing Pr(y|g(x)).

If we assume the training examples are independent, then it
makes sense to multiply their probabilities.

Pr (D) =
n∏

i=1

Pr (yi |xi)

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Loss Functions in General: Negative Log Probability

Adding log probabilities is much easier than multiplying
probabilities.

Pr (D) =
n∏

i=1

Pr (yi |xi)

ln Pr (D) =
n∑

i=1

ln Pr (yi |xi)

“Minimizing the loss” is the same thing as “maximizing the
log probability” if we set the “loss” (L) equal to the average
negative log probability. We will often use E [·] to mean
“average value:”

L = E [− ln Pr(y|x)] = −1

n

n∑
i=1

Pr(yi |xi)

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Loss Function: Binary Classifier

For a binary classifier, the target output is binary, y ∈ {0, 1}.
Suppose we interpret this as the observed value of a Bernoulli
random variable, Y .

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Loss Function: Binary Classifier

Suppose we use a sigmoid output nonlinearity, so that
0 < g(x) < 1, then we can interpret g(x) as the probability that Y
should be one:

g(x) = Pr(Y = 1|x)

Under this interpretation, the loss function is

L = E [− ln Pr(Y = y |x)]

= −E [y ln Pr(Y = 1|x|) + (1− y) ln Pr(Y = 0|x)]

= −E [y ln g(x) + (1− y) ln(1− g(x))]

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Loss Function: Multinomial Classifier

https://commons.wikimedia.org/wiki/File:

Euclidean_Voronoi_diagram.svg

The best way to formulate an m-class classifier is by having an
m-element one-hot output vector, y ∈ {0, 1}m, where

yk =

{
1 k is the correct class

0 otherwise

https://commons.wikimedia.org/wiki/File:Euclidean_Voronoi_diagram.svg
https://commons.wikimedia.org/wiki/File:Euclidean_Voronoi_diagram.svg

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Loss Function: Multinomial Classifier

Now we want the neural net output, g(x) = [g1(x), g2(x), . . .]T , to
be interpretable as a set of probabilities, gk(x) = Pr(Yk = 1|x). In
order to be interpreted as probabilities, the outputs need to satisfy:
0 ≤ gk(x) ≤ 1 and

∑
k gk(x) = 1. An output nonlinearity that

satisfies these conditions is the softmax, defined as

gk(x) = softmax
k

(z2) =
ez2,k∑
k ′ e

z2,k′

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Loss Function: Multinomial Classifier

We can interpret gk(x) = Pr(Yk = 1|x) if

Yk =

{
1 k is the correct class

0 otherwise
, gk(x) =

ez2,k∑
k ′ e

z2,k′

With these definitions, the loss function is the cross-entropy loss:

L = E [− ln Pr(y|x)]

= −E

[∑
k

yk ln gk(x)

]

= −1

n

n∑
i=1

ln gcorrect class(xi)

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Loss Function: Regression

For a nonlinear regression neural net, the target function y is an
arbitrary real vector. In this case, a useful probability model
assumes that

y = g(x) + v,

where v is zero-mean, unit variance Gaussian noise:

Pr(y|g(x)) = e−
1
2
‖y−g(x)‖2

The loss function is then just the mean squared error:

L = E [− ln Pr(y|x)]

= E

[
1

2
‖y − g(x)‖2

]
= − 1

2n

n∑
i=1

‖yi − g(xi)‖2

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Loss Function: Regression

Minimum Mean Squared Error (MMSE)⇒ g(x) = conditional
expected value of y

g∗(x) = argminL = argmin
1

2
E
[
‖y − g(x)‖2

]
which is minimized by

gMMSE (x) = E [y|x]

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Outline

1 Intro

2 Classification Example: Arbitrary Classifier

3 Regression Example: Semicircle → Parabola

4 Scalar Nonlinearities

5 Loss Functions

6 Learning: Gradient Descent

7 Back-Propagation

8 Backprop Example: Semicircle → Parabola

9 Summary

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Gradient Descent: How do we improve W and b?

Given some initial neural net parameter we want to find a better
value of the same parameter. We do that using gradient descent:

W←W − η
(
∂L
∂W

)T

,

where η is a learning rate (some small constant, e.g., η = 0.001 or
so).

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Loss Gradient

Suppose we use MSE loss:

L = E
[
‖y − g(x)‖2

]
= E

[
‖y − a2(x)‖2

]
,

where the expectation means “average over the training data.”
Since L is a scalar, it should be possible to compute ∂L

∂Wl
, but

how? For example, can we use the chain rule? Let’s try:

a2 = f2 (z2) , z2 = b2 + W2a1

∂L
∂W2

=

(
∂L
∂a2

)
×
(
∂a2

∂z2

)
× . . . ?

We’d like to put ∂z2/W2 here, but the derivative of a vector w.r.t.
a matrix is not well-defined. We need write it out in smaller pieces,
to make sure we get it right.

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Loss Gradient using the Chain Rule

If we write out zl = bl + Wlal−1 in terms of its scalar components,
it is:

zl ,k = bl ,k +
∑
j

wl ,k,jal−1,j

The chain rule gives us

∂L
∂wl ,k,j

= E

[(
∂L
∂zl ,k

)(
∂zl ,k
∂wl ,k,j

)]
= E

[(
∂L
∂zl ,k

)
al−1,j

]
,

where, again, the expectation means “average over the training
samples.” Now, remember that the gradient matrix is the matrix
whose (j , k)th element is ∂L

∂wl,k,j
, thus:

∂L
∂Wl

= E

[
al−1

∂L
∂zl

]
,

al−1 = [al−1,1, al−1,2, . . . , al−1,ml−1
]T is a column vector,

∂L
∂zl

= [∂L∂zl,1 , . . . ,
∂L
∂zl,ml

] is a row vector

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

How to train a neural network

1 Find a training dataset.
2 Randomly initialize Wl and bl .
3 Perform forward propagation: zl = bl + Wlal−1.
4 Define a loss function: L = E [− ln Pr(y|x)] in general, of

which one example is the MSE loss L = E
[

1
2‖y − g(x)‖2

]
.

5 Perform back propagation.
6 Calculate the loss gradients,

∂L
∂Wl

= E

[
al−1

∂L
∂zl

]
,

∂L
∂bl

= E

[
∂L
∂zl

]
7 Perform gradient descent:

Wl ←Wl − η
(
∂L
∂Wl

)T

bl ← bl − η
(
∂L
∂bl

)T

8 Repeat steps 3-6 until convergence.

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Outline

1 Intro

2 Classification Example: Arbitrary Classifier

3 Regression Example: Semicircle → Parabola

4 Scalar Nonlinearities

5 Loss Functions

6 Learning: Gradient Descent

7 Back-Propagation

8 Backprop Example: Semicircle → Parabola

9 Summary

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Back-Propagation

Now we know that

∂L
∂Wl

= E

[
al−1

∂L
∂zl

]
How do we find ∂L

∂zl
? Answer: use the chain rule! Since al and zl

are vectors, their Jacobian matrices are well defined, so

∂L
∂zl

=

(
∂L
∂al

)
×
(
∂al

∂zl

)
and

∂L
∂al

=

(
∂L
∂zl+1

)
×
(
∂zl+1

∂al

)

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Derivative of the MSE Loss

The MSE loss is

L = E

[
1

2
‖y − g(x)‖2

]
= E

[
1

2
‖y − a2‖2

]
=

1

2n

n∑
i=1

[
‖yi − a2(xi)‖2

]
So its derivative is

∂L
∂a2

= −1

n
(y − a2)T

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Back-Prop Through a Scalar Nonlinearity

All of the nonlinearities we know except softmax are scalar
nonlinearities, and can be written as al ,1

...
al ,ml

 =

 fl(zl ,1)
...

fl(zl ,ml
)


The Jacobian of this transformation is a diagonal matrix whose
diagonal elements are the derivatives of fl(·) with respect to each
of the elements of zl . Let’s call this matrix f ′l (zl):

∂al

∂zl
= f ′l (zl) ≡


∂fl (zl,1)
∂zl,1

0 · · · 0

0
∂fl (zl,2)
∂zl,2

· · · 0
...

...
. . .

...

0 0 · · · ∂fl (zl,ml
)

∂zl,ml



Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Back-Prop Through a Linear Layer

A linear layer is
zl = bl + Wlal−1

Its Jacobian is
∂zl
∂al−1

= Wl

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Back-Prop in a Two-Layer Neural Net

Putting it all together, for an MSE loss,

∂L
∂z2

= −1

n
(y − a2)T f ′2(z2)

∂L
∂z1

= −1

n
(y − a2)T f ′2(z2)W2f

′
1(z1)

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Outline

1 Intro

2 Classification Example: Arbitrary Classifier

3 Regression Example: Semicircle → Parabola

4 Scalar Nonlinearities

5 Loss Functions

6 Learning: Gradient Descent

7 Back-Propagation

8 Backprop Example: Semicircle → Parabola

9 Summary

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Backprop Example: Semicircle → Parabola

Remember, we are going to try to approximate this using:

g(x) = b2 + W2σ (W1x)

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Randomly Initialized Weights

Here’s what we get if we randomly initialize W1, b2, and W2. The
red vector on the right is the estimation error for this training
token, e = g(x)− y. It’s huge!

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Gradient Updates

Remember that the output of this network is a series of column
vectors, w2,:,j , each of which is multiplied by a1,j and added to the
output. Gradient descent updates w2,:,j by scaling (y− g(x)) times
the activation a1,j , and subtracting:

w2,:,j ← w2,:,j − ηa1,j

(
∂L
∂z2

)T

= w2,:,j − ηa1,j(y − g(x))

Similarly, remember that the input of this network finds the dot
product between x and w1,j ,:, and compares it to a threshold. The
corresponding learning rule subtracts ∂L

∂z1,j
xT from each row:

w1,j ,: ← w1,j ,: − η
∂L
∂z1,j

xT

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Gradient Updates

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Gradient Updates

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Gradient Updates

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Gradient Updates

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Gradient Updates

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Outline

1 Intro

2 Classification Example: Arbitrary Classifier

3 Regression Example: Semicircle → Parabola

4 Scalar Nonlinearities

5 Loss Functions

6 Learning: Gradient Descent

7 Back-Propagation

8 Backprop Example: Semicircle → Parabola

9 Summary

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Summary

A neural network approximates an arbitrary function using a
sort of piece-wise approximation.

The activation of each piece is determined by a nonlinear
activation function applied to the hidden layer.

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Nonlinearities Summarized

Unit-step and signum nonlinearities, on the hidden layer,
cause the neural net to compute a piece-wise constant
approximation of the target function. Unfortunately, they’re
not differentiable, so they’re not trainable.

Sigmoid and tanh are differentiable approximations of
unit-step and signum, respectively. Unfortunately, they suffer
from a vanishing gradient problem: as the weight matrix gets
larger, the derivatives of sigmoid and tanh go to zero, so error
doesn’t get back-propagated through the nonlinearity any
more.

ReLU has the nice property that the output is a
piece-wise-linear approximation of the target function, instead
of piece-wise constant. It also has no vanishing gradient
problem. Instead, it has the dying-ReLU problem.

Softplus, Leaky ReLU, and PReLU are different solutions to
the dying-ReLU problem.

Intro Classification Regression Nonlinearities Loss Learning Backprop Example Summary

Error Metrics Summarized

Training is done using gradient descent.

“Back-propagation” is the process of using the chain rule of
differentiation in order to find the derivative of the loss with
respect to each of the hidden layer excitation vectors.

From the back-propagated gradient vectors, we calculate the
weight gradient matrix as

∂L
∂Wl

= E

[
al−1

∂L
∂zl

]
For a regression problem, use MSE to achieve g(x)→ E [y|x].

For a binary classifier with a sigmoid output, BCE loss gives
you the MSE result without the vanishing gradient problem.

For a multi-class classifier with a softmax output, CE loss
gives you the MSE result without the vanishing gradient
problem.

	Intro
	Classification Example: Arbitrary Classifier
	Regression Example: Semicircle Parabola
	Scalar Nonlinearities
	Loss Functions
	Learning: Gradient Descent
	Back-Propagation
	Backprop Example: Semicircle Parabola
	Summary

