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Notation

x - a scalar

x ∈ <m - a column vector

xT ∈ <n - a row vector

X ∈ <m×n - a matrix



Notation Types of Derivatives Derivatives with Vectors Derivatives with Matrices Conclusions

Trace and Determinant

The trace of a matrix is the sum of its diagonal elements:

tr(X) =
∑
i

xi ,i

The determinant of an n × n matrix is

|X| =
n∑

j=1

(−1)i+jxi ,j |X¬i ,¬j | ∀1 ≤ i ≤ n

=
n∑

i=1

(−1)i+jxi ,j |X¬i ,¬j | ∀1 ≤ j ≤ n

where X¬i ,¬j is the submatrix computed by removing the i th

row and j th column. The determinant may also be written as
the product of the eigenvalues:

|X| =
n∏

i=1

λi (X)
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Norms of Vectors

The Lp norm of a vector is

‖x‖p =
(
xp1 + xp2 + · · ·+ xpn

)1/p
If the subscript is omitted, you may assume the L2 norm,
a.k.a. the Euclidean norm:

‖x‖ = ‖x‖2 =
√

x21 + x22 + · · ·+ x2n

The Euclidean norm can also be calculated as the square root
of the dot product of x with itself:

‖x‖ =
√
xTx
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Norms of Matrices

The Frobenius norm of a matrix is the generalization of a
Euclidean norm:

‖X‖F =

√∑
i

∑
j

|xi ,j |2

It can be written in an interesting way:

‖X‖F =
√

tr(XTX)

The Lp norm of a matrix is

‖X‖p = sup
v

‖Xv‖p
‖v‖p

These norms have cool mathematical properties, but they are
not as useful in practice, usually, as the Frobenius norm.
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Types of derivatives

Let’s talk about six types of derivatives:
Numerator

Scalar Vector Matrix

D
en

om
in

at
or Scalar ∂y

∂x
∂y
∂x

∂Y
∂x

Vector ∂y
∂x

∂y
∂x

Matrix ∂y
∂X
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Vector-by-Scalar: the Tangent Vector

∂y
∂x is called the tangent vector:

∂y

∂x
=


∂y1
∂x
...

∂ym
∂x


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Tangent Vector

Suppose that x is scalar,
and y = [y1, y2]T is a point
in a vector space.

The function
y(x) = [y1(x), y2(x)]T

sketches a curve in that
space.

The tangent vector is

∂y

∂x
=

[ ∂y1
∂x
∂y2
∂x

] https://commons.wikimedia.

org/wiki/File:

Tangent_to_a_curve.svg

https://commons.wikimedia.org/wiki/File:Tangent_to_a_curve.svg
https://commons.wikimedia.org/wiki/File:Tangent_to_a_curve.svg
https://commons.wikimedia.org/wiki/File:Tangent_to_a_curve.svg
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Tangent Vector, Example #1: Line

Here is the equation for a line:

y(x) = ax =

[
a1x
a2x

]
. . . and here is its tangent vector:

∂y

∂x
= a
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Tangent Vector, Example #2: Circle

Here is the equation for a circle:

y(θ) =

[
r cos θ
r sin θ

]
. . . and here is its tangent vector:

∂y

∂θ
=

[
−r sin θ
r cos θ

]

https://commons.wikimedia.

org/wiki/File:Circle%

2B3vectors_animated.gif

https://commons.wikimedia.org/wiki/File:Circle%2B3vectors_animated.gif
https://commons.wikimedia.org/wiki/File:Circle%2B3vectors_animated.gif
https://commons.wikimedia.org/wiki/File:Circle%2B3vectors_animated.gif
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Rectifiable Curve

Suppose that x is scalar, and y(x) = [y1(x), y2(x)]T is a curve. If
∂y
∂x exists and is finite, then it is possible to calculate the length of
the curve by integrating ∫

‖∂y
∂x
‖dx

https://upload.wikimedia.org/wikipedia/commons/d/dc/

Arc_length.gif

https://upload.wikimedia.org/wikipedia/commons/d/dc/Arc_length.gif
https://upload.wikimedia.org/wikipedia/commons/d/dc/Arc_length.gif
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Tangent Vector, Example #2: Circle

If y(θ) = [r cos θ, r sin θ]T , its tangent is

∂y

∂θ
=

[
−r sin θ
r cos θ

]
The circumference of the circle is

c =

∫ π

−π
‖∂y
∂θ
‖dθ

=

∫ π

−π

√
(−r sin θ)2 + (r cos θ)2dθ

=

∫ π

−π
rdθ = 2πr
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Scalar-by-Vector: the Gradient

If y is a scalar function of a vector x, then ∇y is called the
gradient:

∇y =


∂y
∂x1
...
∂y
∂xm


Since ∂y

∂x was a column vector, we will define ∂y
∂x to be a row

vector. This is called “numerator layout notation,” and will have
some benefits later on.

∂y

∂x
= ∇yT =

[
∂y

∂x1
, . . . ,

∂y

∂xm

]
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Directional Derivative

Suppose y(x) is a scalar function
of a vector x = [x1, x2]T . If u is
any unit vector, then the
directional derivative of y(x) in
the u direction is written as

∇uy = ∇yTu

=
∂y

∂x
u

=
∂y

∂x1
u1 +

∂y

∂x2
u2 https://commons.wikimedia.

org/wiki/File:

Directional_derivative_

contour_plot.svg

https://commons.wikimedia.org/wiki/File:Directional_derivative_contour_plot.svg
https://commons.wikimedia.org/wiki/File:Directional_derivative_contour_plot.svg
https://commons.wikimedia.org/wiki/File:Directional_derivative_contour_plot.svg
https://commons.wikimedia.org/wiki/File:Directional_derivative_contour_plot.svg
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Gradient Example #1: Affine Function

An affine function of x is written:

y(x) = aTx + b

= a1x1 + a2x2 + b

Its gradient is

∂y

∂x
= aT
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Gradient Example #2: Euclidean Norm

Consider the Euclidean norm of a vector:

‖x‖2 = xTx = x21 + . . .+ x2n

By analogy to the affine function, setting aT = xT , we might think
that ∂xT x

∂x = xT . But from basic algebra, we know that

∂(x21 + . . .+ x2n )

∂x
=

[
∂(x21 + . . .+ x2n )

∂x1
, . . . ,

∂(x21 + . . .+ x2n )

∂xn

]
= [2x1, . . . , 2xn]

= 2xT

What went wrong?
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The Stop-Gradient Approach

One way to approach the problem of ∂xT x
∂x is the stop-gradient

approach:
1 First, pretend that xT is a constant vector that does not

change when x changes — in other words, stop the gradient
w.r.t. xT . We can write this as

∂ sg(xT )x

∂x
= xT

2 Second, take the derivative w.r.t. xT while stopping the
gradient w.r.t. x:

∂xT sg(x)

∂xT
= x

3 Finally, realize that when x changes, xT also changes, so we
need to include both parts of the derivative:

∂xTx

∂x
=
∂ sg(xT )x

∂x
+

(
∂xT sg(x)

∂xT

)T

= 2xT
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Gradient Example #3: Linear Regression

Linear regression is the problem
of approximating yi as a linear
function of xi :

yi ≈ aTxi , 1 ≤ i ≤ n

The approximation is computed
by minimizing the mean-squared
error:

L =
n∑

i=1

(
yi − xTi a

)2
=

n∑
i=1

(
y2i − yia

Txi − yix
T
i a + aTxix

T
i a
) https://commons.wikimedia.

org/wiki/File:Linear_

least_squares_example2.svg

https://commons.wikimedia.org/wiki/File:Linear_least_squares_example2.svg
https://commons.wikimedia.org/wiki/File:Linear_least_squares_example2.svg
https://commons.wikimedia.org/wiki/File:Linear_least_squares_example2.svg
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Gradient Example #3: Linear Regression

L =
n∑

i=1

(
y2i − yia

Txi − yix
T
i a + aTxix

T
i a
)

We can solve for a by finding the derivative, ∂L
∂a , and setting it

equal to zero:

∂L
∂a

=
∂L(a, sg(aT ))

∂a
+

(
∂L(sg(a), aT )

∂aT

)T

=
n∑

i=1

−2yix
T
i + 2aTxix

T
i = 0

a =

(
n∑

i=1

xix
T
i

)−1( n∑
i=1

xiyi

)
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Vector-by-Vector: the Jacobian

If y(x) ∈ <m is a vector function of a vector x ∈ <n, then ∂y
∂x is

called the Jacobian.

∂y

∂x
=


∂y1
∂x1

· · · ∂y1
∂xn

...
. . .

...
∂ym
∂x1

· · · ∂ym
∂xn


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Jacobian Example: Affine Transformation

An affine transformation of a vector x is written as:

y(x) = Ax + b

=

[
a1,1x1 + a1,2x2 + b1
a2,1x1 + a2,2x2 + b2

]
Its Jacobian is:

∂y

∂x
= A
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Chain Rule

The Jacobian is most useful because we can use it in the chain
rule. Suppose that z ∈ <p is a function of y ∈ <n, and y is a
function of x ∈ <m. Then

∂z

∂x
=
∂z

∂y

∂y

∂x

=


∂z1
∂y1

· · · ∂z1
∂yn

...
. . .

...
∂zp
∂y1

· · · ∂zp
∂yn




∂y1
∂x1

· · · ∂y1
∂xm

...
. . .

...
∂yn
∂x1

· · · ∂yn
∂xm

 =


∂z1
∂x1

· · · ∂z1
∂xm

...
. . .

...
∂zp
∂x1

· · · ∂zp
∂xm


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Summary: Derivatives with Vectors

∂ax

∂x
= a

∂aTx

∂x
= aT

∂xTx

∂x
= 2xT

∂(yi − aTxi )
2

∂a
= 2(aTxi − yi )x

T
i

∂Ax

∂x
= A
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Matrix-by-Scalar: the Tangent Matrix

If Y(x) ∈ <m×n is a matrix function of a scalar x , we can compute
a tangent matrix, ∂Y

∂x :

∂Y

∂x
=


∂y1,1
∂x · · · ∂y1,n

∂x
...

. . .
...

∂ym,1

∂x · · · ∂ym,n

∂x


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Tangent Matrix Example #1: Linear Scaling

Suppose that

Y(x) = Ax

=

 a1,1x · · · a1,nx
...

. . .
...

am,1x · · · am,nx


Then its tangent matrix is

∂Y

∂x
= A
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Tangent Matrix Example #2: Rotation Matrix

The rotation matrix, T(θ), is the
matrix that takes any input
vector and rotates it by θ radians:

T(θ) =

[
cos θ − sin θ
sin θ cos θ

]
https://commons.wikimedia.

org/wiki/File:Visual_

Derivation_of_Equations_

For_Rotation_In_2D.svg

https://commons.wikimedia.org/wiki/File:Visual_Derivation_of_Equations_For_Rotation_In_2D.svg
https://commons.wikimedia.org/wiki/File:Visual_Derivation_of_Equations_For_Rotation_In_2D.svg
https://commons.wikimedia.org/wiki/File:Visual_Derivation_of_Equations_For_Rotation_In_2D.svg
https://commons.wikimedia.org/wiki/File:Visual_Derivation_of_Equations_For_Rotation_In_2D.svg


Notation Types of Derivatives Derivatives with Vectors Derivatives with Matrices Conclusions

Tangent Matrix Example #2: Rotation Matrix

The rotation matrix and its tangent are:

T(θ) =

[
cos θ − sin θ
sin θ cos θ

]
,

∂T

∂θ
=

[
− sin θ − cos θ
cos θ − sin θ

]
One thing we can do with this is, by simple linearity, for any vector
v(θ) = T(θ)u, for a fixed initial u, we can show that

∂v

∂θ
=
∂T(θ)u

∂θ
=

(
∂T

∂θ

)
u
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Scalar-by-Matrix: the Gradient Matrix

∂y
∂X has no universally accepted name, but in machine learning it is
often called the gradient matrix, in analogy with the gradient
vector. In numerator layout order, X and ∂y/∂X are defined as:

X =

 x1,1 · · · x1,n
...

. . .
...

xm,1 · · · xm,n

 , ∂y

∂X
=


∂y
∂x1,1

· · · ∂y
∂xm,1

...
. . .

...
∂y
∂x1,n

· · · ∂y
∂xm,n


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Gradient Matrix Example #1: Trace of X

For example, suppose y = tr(X):

y(X) = tr(X) = x1,1 + x2,2 + · · ·

The gradient of the trace of a matrix is:

∂y

∂X
=


∂y
∂x1,1

∂y
∂x2,1

· · ·
∂y
∂x1,2

∂y
∂x2,2

· · ·
...

...
. . .

 =

 1 0 · · ·
0 1 · · ·
...

...
. . .


In other words,

∂ tr(X)

∂X
= I
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Gradient Matrix Example #1: Trace of AX

Now suppose y = tr(AX), where A ∈ <n×m and X ∈ <m×n. The
(i , j)th element of the matrix C = AX is ci ,j =

∑m
k=1 ai ,kxk,j . The

trace is the sum along the main diagonal, so

y(X) = tr(AX) =
n∑

i=1

ci ,i =
n∑

i=1

m∑
k=1

ai ,kxk,i

The gradient of the trace of a matrix is:

∂y

∂X
=


∂y
∂x1,1

· · · ∂y
∂xm,1

...
. . .

...
∂y
∂x1,n

· · · ∂y
∂xm,n

 =

 a1,1 · · · a1,m
...

. . .
...

an,1 · · · an,m

 = A

In other words,
∂ tr(AX)

∂X
= A
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Gradient Matrix Example #2: Pre- and Post-Multiplication

Suppose we pre-multiply by some vector u, and post-multiply by
some other vector v:

y(X) = uTXv =
m∑
i=1

n∑
j=1

uixi ,jvj

Then the gradient is:

∂y

∂X
=


∂y
∂x1,1

· · · ∂y
∂xm,1

...
. . .

...
∂y
∂x1,n

· · · ∂y
∂xm,n

 =

 u1v1 · · · umv1
...

. . .
...

u1vn · · · umvn

 = vuT

So the gradient of uTXv is vuT ? Why does that make sense?
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The Trace Equality

It’s time to introduce one more fundamental fact about linear
algebra, called the trace equality. For any compatibly-sized
matrices A ∈ <m×n and B ∈ <n×m,

tr(AB) = tr(BA)
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The Trace Equality

tr(AB) = tr(BA)

Proof:

The (i , j)th element of the matrix C = AB is
ci ,j =

∑n
k=1 ai ,kbk,j . The trace sums the main diagonal, so

tr(AB) =
m∑
i=1

ci ,i =
m∑
i=1

n∑
k=1

ai ,kbk,i

The (j , k)th element of the matrix D = BA is
dj ,k =

∑m
i=1 bj ,iai ,k . The trace sums the main diagonal, so

tr(BA) =
m∑

k=1

dk,k =
n∑

k=1

m∑
i=1

bk,iai ,k

Those two things are the same.
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Gradient Matrix Example #2: Pre- and Post-Multiplication

uTXv is a scalar, so it is its own trace:

y(X) = uTXv = tr
(
uTXv

)
By the trace equality,

y(X) = tr
(
uTXv

)
= tr

(
vuTX

)
So the gradient is:

∂y

∂X
=
∂ tr

(
vuTX

)
∂X

= vuT
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Gradient Matrix Example #3: Frobenius Norm Squared

There are several possible extensions of Euclidean norms to
matrices, of which the Frobenius norm is the most useful. The
Frobenius norm squared is just the sum of the squares of all
elements of the matrix:

‖X‖2F =
m∑
i=1

n∑
j=1

x2i ,j

From the definition of a matrix gradient, it’s pretty obvious that

∂‖X‖2F
∂X

==

 2x1,1 · · · 2xm,1
...

. . .
...

2x1,n · · · 2xm,n

 = 2XT
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Gradient Matrix Example #3: Frobenius Norm Squared

If you remember, the trace of AX is

tr(AX) =
n∑

i=1

m∑
k=1

ai ,kxk,i

If we choose A = XT , then ai ,k = xk,i , and therefore

tr(XXT ) = tr(XTX) =
n∑

i=1

m∑
k=1

x2k,i = ‖X‖2F

The gradient is:

∂ tr(XTX)

∂X
=
∂ tr(sg(XT )X)

∂X
+

(
∂ tr(XT sg(X))

∂XT

)T

= 2XT ,

which is the same as the answer on the previous slide!



Notation Types of Derivatives Derivatives with Vectors Derivatives with Matrices Conclusions

Gradient Matrix Example #4: Multiple Linear Regression

Multiple linear regression is the problem of approximating a vector
output, yi , as a linear function of xi :

yi ≈ ATxi , 1 ≤ i ≤ n

It’s useful to create data matrices, X and Y, defined as

Y =

 yT1
...
yTn

 , X =

 xT1
...
xTn


Then the multiple linear regression problem is to find A such that

Y ≈ XA
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Gradient Matrix Example #4: Multiple Linear Regression

Y ≈ XA

The approximation is computed by minimizing the mean-squared
error:

L =
n∑

i=1

‖yi − ATxi‖22

= ‖Y − XA‖2F
= tr

(
(Y − XA)T (Y − XA)

)
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Gradient Matrix Example #4: Multiple Linear Regression

∂L
∂A

=
∂ tr(YTY)

∂A
−
(
∂ tr(ATXTY)

∂AT

)T

− ∂ tr(YTXA)

∂A
+
∂ tr(ATXTXA)

∂A
= 0− YTX− YTX + 2ATXTX

Setting ∂L
∂A = 0 (a matrix of all zeros) and solving for A gives

A =
(
XTX

)−1
XTY

= X†Y
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Summary: Derivatives with Matrices

∂Ax

∂x
= A

∂ tr(X)

∂X
= I

∂ tr(AX)

∂X
= A

∂ tr(XTX)

∂X
= 2XT

∂ tr((Y − XA)T (Y − XA))

∂X
= −2 (Y − XA)T X
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Types of derivatives

Numerator
Scalar Vector Matrix

D
en

om
in

at
or Scalar ∂y

∂x
∂y
∂x

∂Y
∂x

Vector ∂y
∂x

∂y
∂x

Matrix ∂y
∂X
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Vector-by-Scalar: the Tangent Vector

∂y
∂x is called the tangent vector:

∂y

∂x
=


∂y1
∂x
...

∂ym
∂x


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Scalar-by-Vector: the Gradient

If y is a scalar function of a vector x, then ∂y
∂x

T
is called the

gradient.

∂y

∂x
= ∇yT

=

[
∂y

∂x1
, . . . ,

∂y

∂xm

]
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Vector-by-Vector: the Jacobian

If y(x) ∈ <m is a vector function of a vector x ∈ <n, then ∂y
∂x is

called the Jacobian.

∂y

∂x
=


∂y1
∂x1

· · · ∂y1
∂xn

...
. . .

...
∂ym
∂x1

· · · ∂ym
∂xn


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Conclusions: Derivatives with Vectors

∂ax

∂x
= a

∂aTx

∂x
= aT

∂xTx

∂x
= 2xT

∂(yi − aTxi )
2

∂a
= 2(aTxi − yi )x

T
i

∂Ax

∂x
= A
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Matrix-by-Scalar: the Tangent Matrix

If Y(x) ∈ <m×n is a matrix function of a scalar x , we can compute
a tangent matrix, ∂Y

∂x :

∂Y

∂x
=


∂y1,1
∂x · · · ∂y1,n

∂x
...

. . .
...

∂ym,1

∂x · · · ∂ym,n

∂x


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Scalar-by-Matrix: the Gradient Matrix

∂y
∂X has no universally accepted name, but in machine learning it is
often called the gradient matrix, in analogy with the gradient
vector. In numerator layout order, X and ∂y/∂X are defined as:

X =

 x1,1 · · · x1,n
...

. . .
...

xm,1 · · · xm,n

 , ∂y

∂X
=


∂y
∂x1,1

· · · ∂y
∂xm,1

...
. . .

...
∂y
∂x1,n

· · · ∂y
∂xm,n


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Conclusions: Derivatives with Matrices

∂Ax

∂x
= A

∂ tr(X)

∂X
= I

∂ tr(AX)

∂X
= A

∂ tr(XTX)

∂X
= 2XT

∂ tr((Y − XA)T (Y − XA))

∂X
= −2 (Y − XA)T A
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