Lecture 6: Griffin-Lim Algorithm

Mark Hasegawa-Johnson

These slides are in the public domain.

ECE 417: Multimedia Signal Processing, Fall 2023
(1) Review: STFT and ISTFT
(2) Why is inverting a spectrogram difficult?
(3) Griffin-Lim Algorithm: A vector-space representation

4 Griffin-Lim Algorithm: Signal example
(5) Conclusions

Outline

(1) Review: STFT and ISTFT
(2) Why is inverting a spectrogram difficult?
(3) Griffin-Lim Algorithm: A vector-space representation

4 Griffin-Lim Algorithm: Signal example
(5) Conclusions

STFT and ISTFT

Let D be the window hop length, then the STFT can be written as

- STFT:

$$
X_{t}[k]=\sum_{n} x[n] w[n-t D] e^{-j \omega_{k}(n-t D)}
$$

- ISTFT using overlap-add:

$$
x[n]=\frac{\sum_{t} \frac{1}{N} \sum_{k=0}^{N-1} X_{t}[k] e^{j \omega_{k}(n-t D)}}{\sum_{t} w[n-t D]}
$$

... where, usually, we choose the window and the hop length so that $\sum_{t} w[n-t D]$ is a constant.

Spectrogram $=20 \log _{10} \mid$ Short Time Fourier Transform \mid

(2) Why is inverting a spectrogram difficult?
(3) Griffin-Lim Algorithm: A vector-space representation

4 Griffin-Lim Algorithm: Signal example
(5) Conclusions

Inverting a spectrogram

Inverting a spectrogram has two problems:
(1) We don't know the phase of $X_{t}[k]$
(2) If $X_{t}[k]$ was computed from a signal, then it can be inverted. But if it was computed in some other way (e.g., generated by a neural network), then it might not have a valid inverse.

Example: We don't know the phase

Correct Phase

Time-Domain Signal

Magnitude FFT

Zero Phase

Time-Domain Signal

Magnitude FFT

Random Phase

Time-Domain Signal

Example: There is no valid inverse

Outline

(1) Review: STFT and ISTFT
(2) Why is inverting a spectrogram difficult?
(3) Griffin-Lim Algorithm: A vector-space representation

4 Griffin-Lim Algorithm: Signal example
(5) Conclusions

Conjugage symmetry: A linear constraint

- In order for $x[n]$ to be real-valued, $X_{t}[k]$ must be conjugate-symmetric, i.e., its real part $X_{t, r}[k]$ and its imaginary part $X_{t, i}[k]$ need to satisfy:

$$
\begin{aligned}
X_{t, r}[k] & =X_{t, r}[N-k] \\
X_{t, i}[k] & =-X_{t, i}[N-k]
\end{aligned}
$$

- Actually, this is a pretty easy constraint to satisfy. We just need to make sure that the magnitude is $M_{t}[k]=M_{t}[-k]$, and the phase is $\phi_{t}[k]=-\phi_{t}[-k]$, i.e.,

$$
X_{t}[k]=X_{t}^{*}[-k]=M_{t}[k] e^{j \phi_{t}[k]}
$$

Overlap between frames: A harder linear constraint

- Normally, we invert STFT using overlap-add.
- In order to be a valid STFT, however, you should get the same value of $x[n]$ no matter which window you use to calculate it.
- That means that, if each pair of windows overlap by $L-D$ samples (L is frame length, D is hop length), then those $L-D$ samples need to have exactly the same value, no matter which window you use to calculate them:

$$
\frac{\sum_{k=0}^{N-1} X_{0}[k] e^{j \omega_{k} n}}{N w[n]}=x[n]=\frac{\sum_{k=0}^{N-1} X_{1}[k] e^{j \omega_{k}(n-D)}}{N w[n-D]}
$$

Overlap between frames: A harder linear constraint

$X_{t}[k]=X_{t, r}[k]+j X_{t, i}[k]$ is a valid STFT only if it meets these $L-D$ linear constraints for the already-known samples of $x[n]$, the ones where $0 \leq n-t D<L-D$:
$\sum_{k=0}^{N-1} X_{t, r}[k]\left(\frac{\cos \left(\omega_{k}(n-t D)\right)}{N w[n-t D]}\right)-\sum_{k=0}^{N-1} X_{t, i}[k]\left(\frac{\sin \left(\omega_{k}(n-t D)\right)}{N w[n-t D]}\right)=x[n]$

Known magnitude: A magnitude constraint

On the other hand, suppose we know the magnitude of the STFT we're trying to construct, $M_{t}[k]$. This is a nonlinear constraint:

$$
M_{t}[k]=\sqrt{X_{t, r}^{2}[k]+X_{t, i}^{2}[k]}
$$

Does a particular magnitude STFT have a valid inverse?

- We want the STFT to have a desired magnitude. This is a nonlinear constraint:

$$
M_{t}[k]=\sqrt{X_{t, r}^{2}[k]+X_{t, i}^{2}[k]}
$$

- In order to be a valid STFT, it must be conjugate symmetric, and overlapping frames need to generate the same samples in the overlap regions. These are linear constraints.
- There is no guarantee that there is a valid $X_{t}[k]$ that satisfies $M[k]=\left|X_{t}[k]\right|$! But to explain the Griffin-Lim algorithm, let's consider a simple example where it is possible to meet both sets of constraints simultaneously, and let's think about how to find the valid STFT.

Combining the two constraints

The Griffin-Lim Algorithm

The Griffin-Lim algorithm tries to find a valid STFT using the following approach:
(1) Initialize with random phase, $\phi_{t}[k] \sim U(0,2 \pi)$:

$$
X_{t}[k]=M_{t}[k] e^{j \phi_{t}[k]}
$$

(2) Repeat the following two steps, over and over, until there is little change from one iteration to the next:

- Find an $X_{t}[k]$ that satisfies the linear constraints:

$$
X_{t}[k] \leftarrow \operatorname{STFT}\left\{\operatorname{ISTFT}\left\{X_{t}[k]\right\}\right\}
$$

- Rescale so that it meets the magnitude constraint:

$$
X_{t}[k] \leftarrow M_{t}[k] e^{j \angle X_{t}[k]}
$$

(3) Terminate: $x[n]=\operatorname{ISTFT}\left\{X_{t}[k]\right\}$

Griffin-Lim initialization: Random phase

Orthogonal projection $\left(X_{t}[k] \leftarrow\right.$ STFT $\left\{\right.$ ISTFT $\left.\left.\left\{X_{t}[k]\right\}\right\}\right)$

Adjusting the magnitude $\left(X_{t}[k] \leftarrow M_{t}[k] e^{j \angle X_{t}[k]}\right)$

Iterate until the change from one iteration to the next becomes small

(1) Initialize with random phase, $\phi_{t}[k] \sim U(0,2 \pi)$:

$$
X_{t}[k]=M_{t}[k] e^{j \phi_{t}[k]}
$$

(2) Repeat the following two steps, over and over, until there is little change from one iteration to the next:

- Find an $X_{t}[k]$ that satisfies the linear constraints:

$$
X_{t}[k] \leftarrow \operatorname{STFT}\left\{\operatorname{ISTFT}\left\{X_{t}[k]\right\}\right\}
$$

- Rescale so that it meets the magnitude constraint:

$$
X_{t}[k] \leftarrow M_{t}[k] e^{j \angle X_{t}[k]}
$$

(3) Terminate: $x[n]=\operatorname{ISTFT}\left\{X_{t}[k]\right\}$

Outline

(1) Review: STFT and ISTFT
(2) Why is inverting a spectrogram difficult?
(3) Griffin-Lim Algorithm: A vector-space representation

4 Griffin-Lim Algorithm: Signal example
(5) Conclusions

STFT of a cosine: A valid STFT

Setting the phase to zero changes the signal!

Zero-Phase First Window $x_{0}[n]$

Zero-Phase Signal $x[n]$

Randomizing the phase also changes the signal!

Random-Phase First Window $x_{0}[n]$

Overlap-add

$\left|X_{0}[k]\right|$

Take the STFT again

Fix the magnitude

Iterate

... and iterate again and again, until convergence

Outline

(1) Review: STFT and ISTFT
(2) Why is inverting a spectrogram difficult?
(3) Griffin-Lim Algorithm: A vector-space representation

4 Griffin-Lim Algorithm: Signal example
(5) Conclusions

Conclusions

(1) Initialize with random phase, $\phi_{t}[k] \sim U(0,2 \pi)$:

$$
X_{t}[k]=M_{t}[k] e^{j \phi_{t}[k]}
$$

(2) Repeat the following two steps, over and over, until there is little change from one iteration to the next:

- Find an $X_{t}[k]$ that satisfies the linear constraints:

$$
X_{t}[k] \leftarrow \operatorname{STFT}\left\{\operatorname{ISTFT}\left\{X_{t}[k]\right\}\right\}
$$

- Rescale so that it meets the magnitude constraint:

$$
X_{t}[k] \leftarrow M_{t}[k] e^{j \angle X_{t}[k]}
$$

(3) Terminate: $x[n]=\operatorname{ISTFT}\left\{X_{t}[k]\right\}$

