Review: STFT and ISTFT	Problems	Vectors	Vectors	Conclusions
	0000	000000000000	00000000	00

Lecture 6: Griffin-Lim Algorithm

Mark Hasegawa-Johnson These slides are in the public domain.

ECE 417: Multimedia Signal Processing, Fall 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Review: STFT and ISTFT	Problems	Vectors	Vectors	Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 2 Why is inverting a spectrogram difficult?
- 3 Griffin-Lim Algorithm: A vector-space representation
- Griffin-Lim Algorithm: Signal example

5 Conclusions

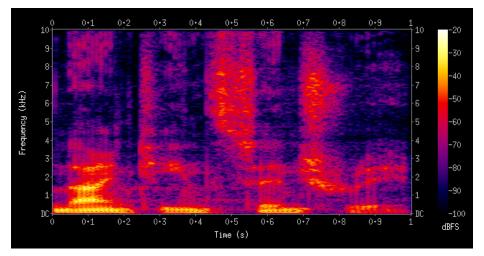
Review: STFT and ISTFT	Problems	Vectors	Vectors	Conclusions
●○○	0000	0000000000000	00000000	
Outline				

1 Review: STFT and ISTFT

- 2 Why is inverting a spectrogram difficult?
- 3 Griffin-Lim Algorithm: A vector-space representation
- ④ Griffin-Lim Algorithm: Signal example

5 Conclusions

Review: STFT and ISTFT	Problems	Vectors	Vectors	Conclusions
○●○	0000	000000000000	000000000	00
STFT and ISTF	Г			


Let *D* be the window hop length, then the STFT can be written as • STFT: $X_t[k] = \sum_n x[n]w[n - tD]e^{-j\omega_k(n-tD)}$

ISTFT using overlap-add:

$$x[n] = \frac{\sum_t \frac{1}{N} \sum_{k=0}^{N-1} X_t[k] e^{j\omega_k(n-tD)}}{\sum_t w[n-tD]}$$

... where, usually, we choose the window and the hop length so that $\sum_{t} w[n - tD]$ is a constant.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

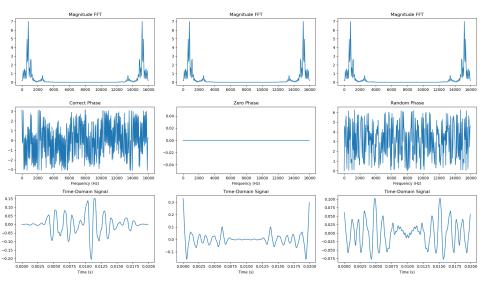
Review: STFT and ISTFT	Problems	Vectors	Vectors	Conclusions
	●○○○	000000000000	00000000	00
Outline				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

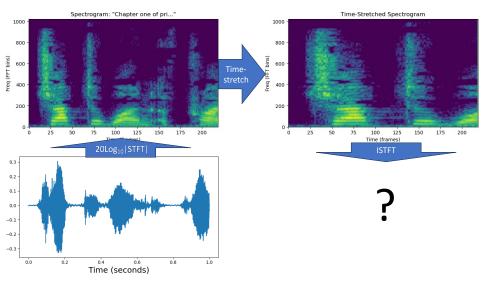
1 Review: STFT and ISTFT

- 2 Why is inverting a spectrogram difficult?
- 3 Griffin-Lim Algorithm: A vector-space representation
- 4 Griffin-Lim Algorithm: Signal example

5 Conclusions


Review: STFT and ISTFT	Problems	Vectors	Vectors	Conclusions
	○●○○	000000000000	00000000	00
Inverting a spe	ctrogram			

Inverting a spectrogram has two problems:


- We don't know the phase of $X_t[k]$
- If X_t[k] was computed from a signal, then it can be inverted. But if it was computed in some other way (e.g., generated by a neural network), then it might not have a valid inverse.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(日)

Review: STFT and ISTFT	Problems 0000	Vectors ●00000000000	Vectors 00000000	Conclusions
Outline				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 Review: STFT and ISTFT

2 Why is inverting a spectrogram difficult?

3 Griffin-Lim Algorithm: A vector-space representation

Griffin-Lim Algorithm: Signal example

5 Conclusions

 In order for x[n] to be real-valued, Xt[k] must be conjugate-symmetric, i.e., its real part Xt,r[k] and its imaginary part Xt,i[k] need to satisfy:

$$X_{t,r}[k] = X_{t,r}[N-k]$$
$$X_{t,i}[k] = -X_{t,i}[N-k]$$

• Actually, this is a pretty easy constraint to satisfy. We just need to make sure that the magnitude is $M_t[k] = M_t[-k]$, and the phase is $\phi_t[k] = -\phi_t[-k]$, i.e.,

$$X_t[k] = X_t^*[-k] = M_t[k]e^{j\phi_t[k]}$$

- Normally, we invert STFT using overlap-add.
- In order to be a valid STFT, however, you should get the same value of x[n] no matter which window you use to calculate it.
- That means that, if each pair of windows overlap by L D samples (L is frame length, D is hop length), then those L D samples need to have exactly the same value, no matter which window you use to calculate them:

$$\frac{\sum_{k=0}^{N-1} X_0[k] e^{j\omega_k n}}{Nw[n]} = x[n] = \frac{\sum_{k=0}^{N-1} X_1[k] e^{j\omega_k(n-D)}}{Nw[n-D]}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $X_t[k] = X_{t,r}[k] + jX_{t,i}[k]$ is a valid STFT only if it meets these L - D linear constraints for the already-known samples of x[n], the ones where $0 \le n - tD < L - D$:

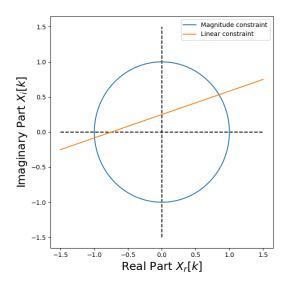
$$\sum_{k=0}^{N-1} X_{t,r}[k] \left(\frac{\cos(\omega_k(n-tD))}{Nw[n-tD]} \right) - \sum_{k=0}^{N-1} X_{t,i}[k] \left(\frac{\sin(\omega_k(n-tD))}{Nw[n-tD]} \right) = x[n]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

On the other hand, suppose we know the **magnitude** of the STFT we're trying to construct, $M_t[k]$. This is a **nonlinear constraint**:

$$M_t[k] = \sqrt{X_{t,r}^2[k] + X_{t,i}^2[k]}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



• We want the STFT to have a desired magnitude. This is a **nonlinear constraint**:

$$M_t[k] = \sqrt{X_{t,r}^2[k] + X_{t,i}^2[k]}$$

- In order to be a valid STFT, it must be conjugate symmetric, and overlapping frames need to generate the same samples in the overlap regions. These are **linear constraints**.
- There is no guarantee that there is a valid $X_t[k]$ that satisfies $M[k] = |X_t[k]|!$ But to explain the Griffin-Lim algorithm, let's consider a simple example where it is possible to meet both sets of constraints simultaneously, and let's think about how to find the valid STFT.

Combining the two constraints

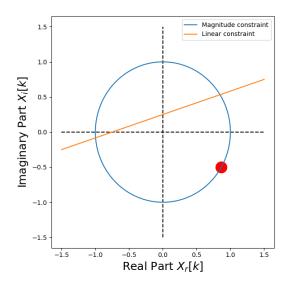
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

The Griffin-Lim algorithm tries to find a valid STFT using the following approach:

Initialize with random phase, $\phi_t[k] \sim U(0, 2\pi)$:

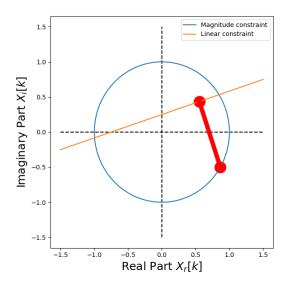
$$X_t[k] = M_t[k]e^{j\phi_t[k]}$$

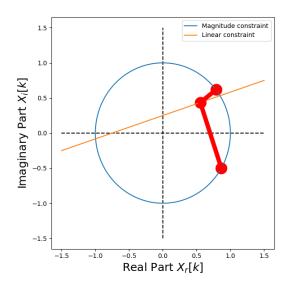
- Repeat the following two steps, over and over, until there is little change from one iteration to the next:
 - Find an $X_t[k]$ that satisfies the linear constraints:

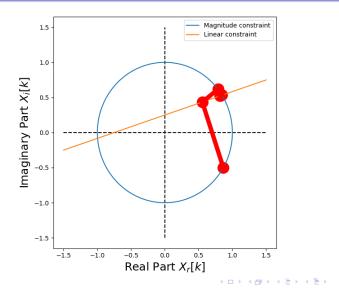

$$X_t[k] \leftarrow \mathsf{STFT}\left\{\mathsf{ISTFT}\left\{X_t[k]\right\}\right\}$$

• Rescale so that it meets the magnitude constraint:

$$X_t[k] \leftarrow M_t[k] e^{j \angle X_t[k]}$$


• Terminate: $x[n] = \mathsf{ISTFT} \{X_t[k]\}$


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで


▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Review: STFT and ISTFT Vectors 0000000000000000 Iterate until the change from one iteration to the next becomes small

æ

Initialize with random phase, $\phi_t[k] \sim U(0, 2\pi)$:

 $X_t[k] = M_t[k]e^{j\phi_t[k]}$

- Repeat the following two steps, over and over, until there is little change from one iteration to the next:
 - Find an $X_t[k]$ that satisfies the linear constraints:

 $X_t[k] \leftarrow \mathsf{STFT}\{\mathsf{ISTFT}\{X_t[k]\}\}$

• Rescale so that it meets the magnitude constraint:

 $X_t[k] \leftarrow M_t[k] e^{j \angle X_t[k]}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

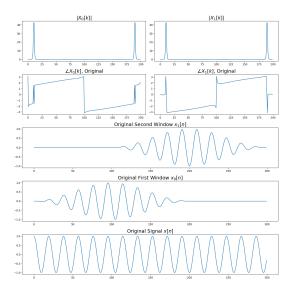
• Terminate: $x[n] = ISTFT \{X_t[k]\}$

Review: STFT and ISTFT	Problems 0000	Vectors 000000000000	Vectors ●○○○○○○○	Conclusions
Outline				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 Review: STFT and ISTFT

2 Why is inverting a spectrogram difficult?

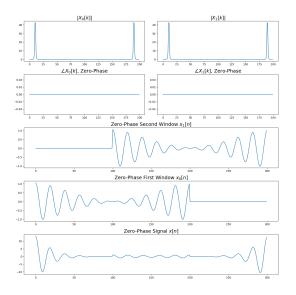

3 Griffin-Lim Algorithm: A vector-space representation

Griffin-Lim Algorithm: Signal example

5 Conclusions

Review: STFT and ISTFT Problems Vectors Vectors Conclusions oo

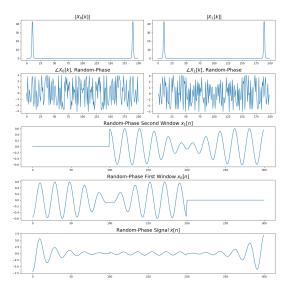
STFT of a cosine: A valid STFT



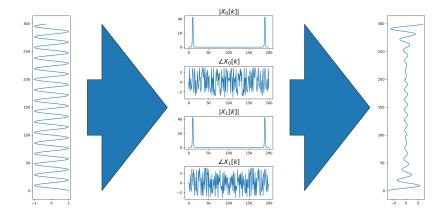
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 Review:
 STFT and ISTFT
 Problems
 Vectors
 Vectors
 Conclusions

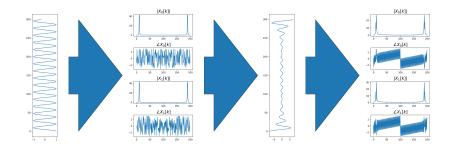
 000
 0000
 00000000000
 000000000
 0000000000
 00000000000


Setting the phase to zero changes the signal!

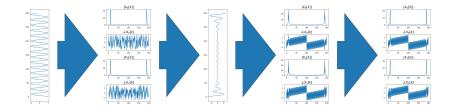
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで


Review: STFT and ISTFT Problems Vectors Vectors Conclusions oo

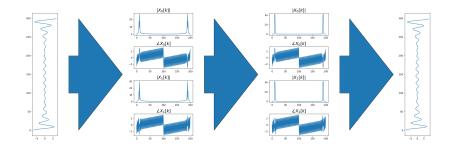
Randomizing the phase also changes the signal!


▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● のへの

Review: STFT and ISTFT	Problems	Vectors	Vectors	Conclusions
	0000	000000000000	○000●0000	00
Overlap-add				

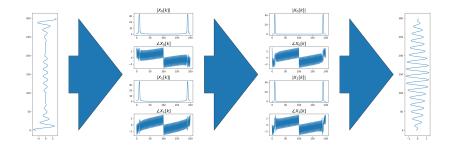

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Review: STFT and ISTFT	Problems 0000	Vectors 000000000000	Vectors ○0000●000	Conclusions
Take the STFT	again			



・ロト・日本・ エー・ うくの

Review: STFT and ISTFT	Problems	Vectors	Vectors	Conclusions
	0000	000000000000	○○○○○●○○	00
Fix the magnit	ude			


Review: STFT and ISTFT	Problems 0000	Vectors 0000000000000	Vectors ○000000●0	Conclusions
lterate				

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Review: STFT and ISTFT Vectors 00000000

and iterate again and again, until convergence

Review: STFT and ISTFT	Problems	Vectors	Vectors	Conclusions
	0000	0000000000000	00000000	●○
Outline				

1 Review: STFT and ISTFT

2 Why is inverting a spectrogram difficult?

3 Griffin-Lim Algorithm: A vector-space representation

④ Griffin-Lim Algorithm: Signal example

5 Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Review: STFT and ISTFT	Problems	Vectors	Vectors	Conclusions
	0000	000000000000	000000000	○●
Conclusions				

Initialize with random phase, $\phi_t[k] \sim U(0, 2\pi)$:

 $X_t[k] = M_t[k]e^{j\phi_t[k]}$

- Repeat the following two steps, over and over, until there is little change from one iteration to the next:
 - Find an $X_t[k]$ that satisfies the linear constraints:

 $X_t[k] \leftarrow \mathsf{STFT}\{\mathsf{ISTFT}\{X_t[k]\}\}$

• Rescale so that it meets the magnitude constraint:

 $X_t[k] \leftarrow M_t[k] e^{j \angle X_t[k]}$

• Terminate: $x[n] = ISTFT \{X_t[k]\}$