STFT	Linear Frequency	Inverse STFT	Nonlinear Frequency	Summary

Lecture 5: Short-Time Fourier Transform and Filterbanks

Mark Hasegawa-Johnson These slides are in the public domain.

ECE 417: Multimedia Signal Processing, Fall 2023

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

STFT	Linear Frequency	Inverse STFT	Nonlinear Frequency	Summary

2 STFT as a Linear-Frequency Filterbank

Inverse STFT

Implementing Nonlinear-Frequency Filterbanks Using the STFT

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

STFT	Linear Frequency	Inverse STFT	Nonlinear Frequency	Summary
●00000000	00000	00000000	000000	00
Outline				

Short-Time Fourier Transform

2 STFT as a Linear-Frequency Filterbank

3 Inverse STFT

Implementing Nonlinear-Frequency Filterbanks Using the STFT

5 Summary

・ロト・日本・日本・日本・日本・日本

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 のへで

The short-time Fourier Transform (STFT) is the Fourier transform of a short part of the signal. We write either $X_m(\omega)$ of $X_m[k]$ to mean:

• The DFT of the short part of the signal that starts at sample *m*,

- windowed by a window of length $L \leq N$ samples,
- evaluated at frequency $\omega = \frac{2\pi k}{N}$.

The next several slides will go through this procedure in detail, then I'll summarize.

First, we just chop out the part of the signal starting at sample *m*. Here are examples from Librivox readings of *White Fang* and *Pride and Prejudice*:

▲□▶▲□▶▲≧▶▲≧▶ 差 のへ⊙

Second, we window the signal. A window with good spectral properties is the Hamming window. The length of the window might be L, which might be less than the FFT length N:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Here is the windowed signals, which is nonzero for $0 \le n - m \le (L - 1)$:

$$x[n,m] = w[n-m]x[n]$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Finally, we take the DTFT of the windowed signal. The result is the STFT, $X_m(\omega)$:

$$X_m(\omega) = \sum_{n=m}^{m+(L-1)} w[n-m]x[n]e^{-j\omega(n-m)}$$

Here it is, plotted as a function of k:

(日)

$$20\log_{10}|X_m(\omega)| = 20\log_{10}\left|\sum_{n} w[n-m]x[n]e^{-j\omega(n-m)}\right|$$

Here it is, plotted as an image, with k =row index, m =column index.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

00000000	00000	0000000	000000	00
STFT	Linear Frequence	Inverse STFT	Nonlinear Frequency	Summary

Putting it all together: STFT

The STFT, then, is defined as

$$X_m(\omega) = \sum_n w[n-m]x[n]e^{-j\omega(n-m)}, \quad \omega = \frac{2\pi k}{N}$$

which we can also write as

$$X_m[k] = \mathsf{DFT} \{w[n]x[n+m]\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

STFT	Linear Frequency	Inverse STFT	Nonlinear Frequency	Summary
000000000	●००००	00000000		00
Outline				

- 1 Short-Time Fourier Transform
- 2 STFT as a Linear-Frequency Filterbank
- 3 Inverse STFT

Implementing Nonlinear-Frequency Filterbanks Using the STFT

・ロト・西ト・山田・山田・山口・

 STFT
 Linear Frequency
 Inverse STFT
 Nonlinear Frequency
 Summary

 00000
 0000
 00000000
 0000000
 00

STFT as a bank of analysis filters

The STFT is defined as:

$$X_{m}[k] = \sum_{n=m}^{m+(L-1)} w[n-m]x[n]e^{-j\omega_{k}(n-m)}$$

which we can also write as

$$X_m[k] = x[m] * h_k[m]$$

where

$$h_k[m] = w[-m]e^{j\omega_k m}$$

The frequency response of this filter is just the DTFT of w[-m], which is $W(-\omega)$, shifted up to ω_k :

$$H_k(\omega) = W(\omega_k - \omega)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hamming window spectrum

The frequency response of this filter is just the DTFT of w[-m], which is $W(-\omega)$, shifted up to ω_k :

$$H_k(\omega) = W\left(\omega_k - \omega
ight)$$

For a Hamming window, w[n] is on the left, $W(\omega)$ is on the right: Hamming window ($a_0 = 0.53836$) Fourier transform

By Olli Niemitalo, public domain image, https://en.wikipedia.org/wiki/Window_function 🚊 🔖 📑 🛼

So the STFT is just like filtering x[n] through a bank of analysis filters, in which the k^{th} filter is a bandpass filter centered at ω_k :

Multidimensional Analysis Filter Banks

By Ventetpluie, GFDL,

https://en.wikipedia.org/wiki/File:Multidimensional_Analysis_Filter_Banks.jpg

• STFT as a Transform:

$$X_m[k] = \mathsf{DFT} \{w[n]x[n+m]\}$$

• STFT as a Filterbank:

$$X_m[k] = x[m] * h_k[m], \quad h_k[m] = w[-m]e^{j\omega_k m}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

STFT	Linear Frequency	Inverse STFT	Nonlinear Frequency	Summary
000000000	00000	●0000000	000000	00
Outline				

- 1 Short-Time Fourier Transform
- 2 STFT as a Linear-Frequency Filterbank
- 3 Inverse STFT
 - Implementing Nonlinear-Frequency Filterbanks Using the STFT

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

5 Summary

• STFT as a Transform:

$$X_m[k] = \mathsf{DFT} \{w[n]x[n+m]\}$$

• STFT as a Filterbank:

$$X_m[k] = x[m] * h_k[m], \quad h_k[m] = w[-m]e^{j\omega_k m}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

STFT as a transform is defined as:

$$X_m[k] = \sum_{n=m}^{m+(N-1)} w[n-m]x[n]e^{-j2\pi k(n-m)/N}$$

Obviously, we can inverse transform as:

$$x[n] = \frac{1}{Nw[n-m]} \sum_{k=0}^{N-1} X_m[k] e^{j2\pi k(n-m)/N}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We get a better estimate of x[n] if we average over all of the windows for which $w[n - m] \neq 0$. This is often called the overlap-add method, because we overlap the inverse-transformed windows, and add them together:

$$x[n] = \frac{\sum_{m} \frac{1}{N} \sum_{k=0}^{N-1} X_{m}[k] e^{j\omega_{k}(n-m)}}{\sum_{m} w[n-m]}$$

Often, the denominator is a constant, independent of n. That happens automatically if there has been no downsampling; it is

$$W(0) = \sum_{m=0}^{N-1} w[m]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Short Time Fourier Transform (STFT):

$$X_m[k] = \sum_n w[n-m]x[n]e^{-j\omega_k(n-m)}, \quad \omega_k = \frac{2\pi k}{N}$$

~ '

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Inverse Short Time Fourier Transform (ISTFT, OLA method):

$$x[n] = \frac{1}{NW(0)} \sum_{m} \sum_{k=0}^{N-1} X_{m}[k] e^{j\omega_{k}(n-m)}$$

 STFT
 Linear Frequency
 Inverse STFT
 Nonlinear Frequency
 Summary

 ISTFT as a bank of synthesis filters

Inverse Short Time Fourier Transform (ISTFT):

$$x[n] = \frac{1}{NW(0)} \sum_{m} \sum_{k=0}^{N-1} X_{m}[k] e^{j\omega_{k}(n-m)}$$

The ISTFT is the sum of filters:

$$\begin{aligned} x[n] &= \frac{1}{W(0)} \sum_{m} \sum_{k=0}^{N-1} X_m[k] e^{j\omega_k(n-m)} \\ &= \sum_{k=0}^{N-1} (X_m[k] * g_k[m]) \end{aligned}$$

where

$$g_k[m] = \begin{cases} \frac{1}{W(0)} e^{j\omega_k m} & 0 \le m \le N-1\\ 0 & \text{otherwise} \end{cases}$$

So the ISTFT is just like filtering $X_m[k]$ through a bank of synthesis filters, in which the k^{th} filter is a bandpass filter centered at ω_k :

Multidimensional Synthesis Filter Banks

By Ventetpluie, GFDL,

https://en.wikipedia.org/wiki/File:Multidimensional_Synthesis_Filter_Banks.jpg

We can compute the STFT, downsample, do stuff to it, upsample, and then resynthesize the resulting waveform:

Multidimensional M_Channel Filter Banks

By Ventetpluie, GFDL,

https://en.wikipedia.org/wiki/File:Multidimensional_M_Channel_Filter_Banks.jpg

STFT	Linear Frequency	Inverse STFT	Nonlinear Frequency	Summary
000000000	00000	00000000	●೦೦೦೦೦	00
Outline				

- 1 Short-Time Fourier Transform
- 2 STFT as a Linear-Frequency Filterbank
- 3 Inverse STFT

Implementing Nonlinear-Frequency Filterbanks Using the STFT

5 Summary

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

STFT	Linear Frequency	Inverse STFT	Nonlinear Frequency	Summary
000000000	00000	00000000	○●0000	00
Short-Time	Fourier Trans	form		

• STFT as a Transform:

$$X_m[k] = \mathsf{DFT} \{w[n]x[n+m]\}$$

• STFT as a Filterbank:

$$X_m[k] = x[m] * h_k[m], \quad h_k[m] = w[-m]e^{j\omega_k m}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

• **STFT as a Transform:** Implement using Fast Fourier Transform.

 $X_m[k] = \mathsf{DFT} \{w[n]x[n+m]\}$ Computational Complexity = $\mathcal{O} \{N \log_2(N)\}$ per m Example: N = 1024

Computational Complexity = 10240 multiplies/sample

• STFT as a Filterbank: Implement using convolution.

 $X_m[k] = x[m] * h_k[m]$ Computational Complexity = $O\{N^2\}$ per m Example: N = 1024Computational Complexity = 1048576 multiplies/sample

STFT	Linear Frequency	Inverse STFT	Nonlinear Frequency	Summary
			000000	
What ab	out othor filto	~?		

- Obviously, FFT is much faster than the convolution approach.
- Can we use the FFT to speed up other types of filter computations, as well?
- For example, can we model the bandpass filtering operations of the human ear from the STFT?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- We want to find y[n] = f[n] * x[n], where f[n] is a length-N impulse response.
- Complexity of the convolution in time domain is \$\mathcal{O}\$ {N} per output sample.
- We can't find y[n] exactly, but we can find $\tilde{y}[n] = f[n] \circledast (w[n-m]x[n])$ from the STFT:

$$Y_m[k] = F[k]X_m[k]$$

 It makes sense to do this only if F[k] has far fewer than N non-zero terms (narrowband filter).

In particular, suppose that f[n] is a bandpass filter, and we'd like to know how much power gets through it. So we'd like to know the power of the signal $\tilde{y}[n] = f[n] \circledast (w[n-m]x[n])$. We can get that as

$$\sum_{n=0}^{N-1} \tilde{y}[n]^2 = \frac{1}{N} \sum_{k=0}^{N-1} |Y_m[k]|^2$$
$$= \frac{1}{N} \sum_{k=0}^{N-1} |F[k]|^2 |X_m[k]|^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

STFT	Linear Frequency	Inverse STFT	Nonlinear Frequency	Summary
000000000	00000	00000000	000000	●○
Outline				

- 1 Short-Time Fourier Transform
- 2 STFT as a Linear-Frequency Filterbank
- **3** Inverse STFT
- Implementing Nonlinear-Frequency Filterbanks Using the STFT

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

STFT	Linear Frequency	Inverse STFT	Nonlinear Frequency	Summary
000000000	00000	00000000		○●
Summary				

• STFT as a Transform:

$$X_m(\omega) = \sum_n w[n-m]x[n]e^{-j\omega(n-m)}, \quad \omega_k = \frac{2\pi k}{N}$$

• STFT as a Filterbank:

$$X_m(\omega) = x[m] * h_k[m], \quad h_\omega[m] = w[-m]e^{j\omega m}$$

• Other filters using STFT:

$$\mathsf{DFT} \{f[n] \circledast (w[n-m]x[n])\} = H[k]X_m[k]$$

• Bandpass-Filtered Signal Power

$$\sum_{n=0}^{N-1} \tilde{y}[n]^2 = \frac{1}{N} \sum_{k=0}^{N-1} |F[k]|^2 |X_m[k]|^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ